на тему рефераты
 
Главная | Карта сайта
на тему рефераты
РАЗДЕЛЫ

на тему рефераты
ПАРТНЕРЫ

на тему рефераты
АЛФАВИТ
... А Б В Г Д Е Ж З И К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я

на тему рефераты
ПОИСК
Введите фамилию автора:


Реферат: Схемотехническое и функциональное проектирование вакуумной коммутационной аппаратуры


мов и их количество;  фазовые углы циклограммы работы  механизмов;

длины звеньев механизмов;  максимальное перемещение толкателя (для


                              - 123 -

кулачковых механизмов); вид движения на входе синтезируемого меха-

низма;  требуемый вид движения на выходе синтезируемого механизма;

желаемое  количество  кинематических  пар;  коэффициент  полезного

действия;  диаметр  условного  прохода  перекрываемого  отверстия.

Стандартные параметры "зашиты" в пакет.

     Выходными данными являются следующие параметры функционирова-

ния механизмов:  функция положения,  функция передаточного отноше-

ния,  коэффициент передачи усилия, момент сил сопротивления, функ-

ция усилия уплотнения.

     ППП "SSVC"  предназначен для синтеза механизмов ВКА на основе

анализа массива форм цепей и содержит два самостоятельных  модуля:

модуль  формирования массива форм цепей и модуль формирования схем

механизмов из форм цепей,  обобщенные блок-схемы которых приведены

на рис.  П.4. ППП "SSVC" позволяет реализовать следующие процедуры

[134]: формировать машинный справочник форм цепей с автоматической

оптимизацией описания их контуров; сформировать структуру механиз-

мов перемещения и уплотнения ВКА;  сформировать описание структуры

кинематических цепей, из которых они образованы; формировать кине-

матические цепи из форм цепей.

     Преобразование той  или иной кинематической цепи в конкретный

механизм выполняется непосредственно разработчиком ВКА.

     По результатам  работы  ППП  "SSVC"  сформированы  таблицы  и

описания форм цепей,  содержащих в своем составе до четырех конту-

ров,  на  основании анализа которых составлен атлас исполнительных

механизмов,  возможность использования которых для  ВКА  определя-

ется, исходя из разработанных кинематических и динамических крите-

риев качества.

                     

    

    


                              - 124 -

     4.3. Структурно-функциональная модель САПР ВКА на этапе  схе-

          мотехнического и функционального проектирования.

     Созданный комплекс программных средств является ядром предла-

гаемой структурно-функциональной модели САПР ВКА для этапа ее схе-

мотехнического  и  функционального проектирования [151],  актуаль-

ность разработки которой отмечена в первой главе.

     На рис. П.5 приведена структура САПР ВКА, реализующая методи-

ки функционального и схемотехнического проектирования и  состоящая

из обслуживающих и проектирующих подсистем.

     Обслуживающими являются подсистемы управления и контроля про-

цессом  проектирования  ВКА (ПУПВКА),  оперативного взаимодействия

(ПОВ),  отображения графической информации (ПОГИ), информационного

обеспечения (ПИО).  Вся информация о существующих конструкциях ВКА

и вспомогательная справочная информация хранится в  банках  данных

системы  (БнД).  Связь конструктора с ЭВМ в диалоговом режиме осу-

ществляется с использованием алфавитно-цифрового дисплея  (АЦД)  и

символьно-графического дисплея (СГД).

     Проектирующие подсистемы представляют собой функционально за-

конченные  части  системы,  последовательно реализующие выделенные

этапы проектирования ВКА. К ним относятся подсистемы выбора и ана-

лиза аналогов и прототипов ВКА (ВАВКА, ААВКА, ВПВКА и АПВКА), син-

теза и анализа физических принципов действия ВКА  (СФПД  и  АФПД),

структурного синтеза и анализа (ССВКА и САВКА), качественного син-

теза и анализа (КСВКА и КАВКА), параметрического синтеза и анализа

(ПСВКА  и  ПАВКА),  компоновки ВКА и ее анализа (КВКА и АКВКА),  а

также подсистемы выбора и анализа аналогов и прототипов  приводов,

вводов  движения  в вакуум,  механизмов и уплотнительных пар (ВАП,

ВАВВ,  ВАМ, ВАУП, ААП, ААВВ, ААМ, ААУП, АПП, ВПВВ, ВПМ, ВПУП, АПП,

АПВВ,  АПМ, АПУП). Кроме этого в системе имеются подсистемы струк-


                              - 125 -

турного синтеза основных составных элементов ВКА (ССП,  ССВВ, ССМ,

ССУП),  а  также  предусмотрены подсистемы структурного синтеза их

сборочных единиц (СССБП, СССБВВ, ССЭУП).

     Функционирование системы  происходит  следующим  образом.  По

вводимому конструктором техническому заданию на создание  конкрет-

ной ВКА, являющемуся отправной точкой разработки, система осущест-

вляет поиск аналога ВКА из числа хранимых  в  БнД  и  при  наличии

нескольких аналогов, соответствующих ТЗ, производит их анализ, вы-

бирая наилучшую конструкцию, чертежи которой находятся в конструк-

торском архиве. Если аналоги отсутствуют, конструктор может произ-

вести корректировку ТЗ (например,  производя его усечение  по  не-

основным  показателям  качества),  и  система осуществляет поиск и

анализ прототипов.  Выбор аналогов и прототипов производится в два

этапа:   сначала   проводится   качественная  оценка  существующих

конструкций,  позволяющая определить требуемый тип  ВКА,  а  затем

проводится   количественная   оценка   для   выявления  подходящей

конструкции.  Если прототип ВКА найден, а осуществленная корректи-

ровка ТЗ нежелательна,  то система анализирует внесенные конструк-

тором в ТЗ изменения и выдает дополнительное  ТЗ  на  модернизацию

соответствующего  функционального  устройства - структурный синтез

привода, ввода движения в вакуум, механизма или уплотнительной па-

ры в подсистемы (ССП, ССВВ, ССМ и ССУП).

     Если прототип не найден,  то осуществляется разработка нового

технического  решения ВКА,  удовлетворяющего заданному ТЗ.  В этом

случае система производит с использованием  эвристических  приемов

поиск и выбор ФПД ВКА. На основе выбранного ФПД производится выяв-

ление всевозможных  структурных  схем,  анализ  и  синтез  которых

представляется  целесообразным.  После  получения структурных схем

определяется качественный состав ФМ ВКА, а на основе моделирования

- оцениваются значения их параметров качества.  Затем система ана-


                              - 126 -

лизирует  параметрические  характеристики  найденных  структур  на

соответствие ТЗ и если структуры, соответствующей ТЗ, нет, то син-

тезируется новая структура на основе другого ФПД  или  корректиру-

ется ТЗ в сторону смягчения предъявляемых требований.

     Если синтезированная  структура  соответствует   ТЗ,   то   в

подсистеме  ПАВКА  формируют частные ТЗ на основные элементы ВКА -

привод,  ввод движения в вакуум,  механизм и уплотнительную  пару.

Далее  система выполняет процедуры поиска и выбора аналогов и про-

тотипов этих структурных составляющих,  аналогичные процедурам по-

иска  и  выбора аналогов и прототипов ВКА.  При этом в подсистемах

анализа прототипов в случае необходимости формируется ТЗ на струк-

турный  синтез сборочных единиц привода,  ввода движения в вакуум,

механизма и элементов уплотнительной пары (СССБП,  СССБВВ,  ССМ  и

ССЭУП).  Если прототип не найден, то осуществляют структурный син-

тез новых технических решений  этих  устройств:  подсистемы  (ССП,

ССВВ, ССМ, ССУП).

     Структурный синтез и анализ новых конструкций ВКА или их эле-

ментов,  аналогично выбору аналогов и прототипов ВКА, также прово-

дится в два этапа: сначала качественно, а затем количественно.

     В зависимости  от наличия аналогов и прототипов элементов ВКА

система производит компоновку ВКА из аналогов или из  модернизиро-

ванных прототипов,  либо из элементов,  полученных в результате их

синтеза,  и осуществляет выбор оптимальной компоновки. После этого

с  использованием уравнения функционирования ВКА (этап моделирова-

ния)  осуществляется  окончательный  параметрический  анализ  ВКА,

спроектированной на основе оптимальной компоновки. Если полученная

конструкция ВКА не соответствует ТЗ,  то осуществляется  корректи-

ровка ТЗ на элементы ВКА и процесс проектирования повторяется.

     Введение в структуру САПР нового этапа - качественного синте-

за  и  анализа  ВКА позволяет выбирать наиболее целесообразные для


                              - 127 -

дальнейшего рассмотрения конструкции, что значительно снижает вре-

мя  работы системы.  Ускорению процесса проектирования и улучшению

качества проектного решения способствует наличие обратной связи  -

постоянной,  после каждого этапа,  проверки получаемой конструкции

на соответствие ТЗ.

     Основными функциями,  выполняемыми подсистемами выбора и ана-

лиза аналогов и прототипов ВКА и их элементов, являются следующие:

формирование  по  ТЗ параметрической модели ВКА;  выбор аналогов и

прототипов, соответствующих ТЗ, формирование интегральных критери-

ев качества ВКА и ее элементов;  выбор наилучшего аналога и прото-

типа из числа отвечающих требованиям ТЗ; формирование ТЗ на модер-

низацию структурных составляющих ВКА и их сборочных единиц.

     Основными процедурами в подсистемах СФПД и АФПД являются:

построение множества  ФПД  ВКА;  выявление множества структур ФПД;

выбор допустимых структур  ФПД;  технологический  и  экономический

анализ ФПД; выбор рациональной структуры ФПД.

     В подсистемах ССВКА и САВКА выполняются следующие процедуры:

формирование множества  структурных  схем  ВКА;  синтез допустимых

структурных схем;  оценка и выбор рациональных  структурных  схем;

корректировка принятых решений.

     В подсистемах КСВКА и КАВКА осуществляют определение  качест-

венного  состава  структурных элементов схем ВКА и выбор среди ка-

чественных структурных схем рациональных решений.

     В подсистемах  ПСВКА и ПАВКА осуществляют:  проектировочные и

поверочные расчеты ВКА;  определение выходных параметров структур-

ных элементов ВКА;  формирование критериев оптимальности и ограни-

чений;  оптимизацию параметров ВКА;  анализ оптимальной компоновки

ВКА;  корректировку  принятого решения в подсистеме ССВКА или кор-

ректировку ТЗ;  формирование проектной документации;  формирование

ТЗ для выбора или проектирования структурных составляющих ВКА.


                              - 128 -

     Основными процедурами в подсистемах  КВКА  и  АКВКА  являются

следующие: синтез компоновок из элементов ВКА; формирование крите-

рия качества компоновок;  анализ и выбор  оптимальной  компоновки;

формирование проектной документации.

     При использовании описанной САПР в качестве подсистемы в  ГАП

ВКА  обязательным процессом является процедура проверки синтезиро-

ванных значений параметров ВКА  требованиям,  определяемым  техни-

ческими характеристиками автоматизированной производственной ячей-

ки (станок,  робот,  комплекты оснастки и инструмента), являющейся

элементом конкретной ГАП [152].  Кроме того, предусмотрена система

адаптации базы данных и накладываемых граничных условий к  измене-

нию  станочного  парка производства,  появлению новых технологий и

др.

     Использование подобной САПР, повышая качество и эффективность

труда конструктора, позволит ему получать принципиально новые тех-

нические решения.

     4.4. Конструкции ВКА, разработанные на основе синтезированных

          структур.

     4.4.1. Конструкции ВКА,  разработанные на основе  синтеза  ее

            структуры на уровне типов основных ФМ.

     Сопоставительный анализ  сформированного  с учетом морфологии

ВКА множества ее обобщенных вариантных структур (с  использованием

программного  модуля "VP1") и существующих конструкций ВКА показал

отсутствие ВКА плоского типа  с  использованием  электромагнитного

привода. Данный факт определил цель проектирования соответствующей

конструкции затвора.  В связи с тем, что величина хода штока типо-

вого  электромагнитного  привода  не позволяет обеспечить сложного


                              - 129 -

движения и требуемых перемещений уплотнительного диска для  перек-

рывания  проходного  отверстия  и  герметизации  УП в плоских уст-

ройствах, в качестве прототипа была выбрана разработанная нами ба-

зовая  конструкция  сверхвысоковакуумного затвора с двумя исполни-

тельными органами и электропневматическим приводом  [153].  Приняв

за основу структуру,  генерируемую по правилу (3.22),  получаем из

выражения (3.30) искомую формулу строения создаваемого устройства:

    

     Общий вид разработанного затвора  представлен  на  рис.  П.6,

П.6А.   Для  согласования  функциональных  параметров  сопрягаемых

основных ФМ совместно с электромагнитным приводом использован гид-

равлический усилитель, т.е. образован комбинированный привод, поз-

воляющий применять подобное решение и для устройств с цельнометал-

лической УП. Проведенный анализ множества     позволил модифициро-

вать описываемую конструкцию за счет использования для перемещения

уплотнительного  диска принципиально нового для ВКА ввода движения

- упруго деформируемого полого элемента - трубки Бурдона. Подобное

выполнение конструкции позволило упростить управление работой зат-

вора,  повысить его быстродействие и  уменьшить  дестабилизирующее

воздействие элементов затвора на вакуумную среду [154].

     Дальнейшее развитие конструкций ВКА,  включающих вводы движе-

ния  -  механизмы  непосредственного действия,  не содержащие пары

трения в вакуумной  полости,  обусловило  необходимость  получения

структуры с одним исполнительным органом. Формула строения данного

устройства получена из выражения (3.32) :

     Общий вид конструкции сверхвысоковакуумного затвора ,  реали-

зующей данную цель, приведен на рис. П.7, П.7А-В.

     Подобное выполнение затвора позволило использовать в структу-

ре  только один исполнительный орган при сохранении достоинств вы-


                              - 130 -

шеописанной конструкции [155].

     4.4.2. Конструкции ВКА,  разработанные на основе  синтеза  ее

            механизмов.

     Необходимость синтеза  механизмов  обусловлена,  как правило,

использованием электромеханического или ручного привода,  а  также

сложным  видом движения при перекрывании и герметизации проходного

отверстия,  что особенно актуально для плоских и проходных  затво-

ров.  Рассмотрим конструкции ВКА, полученные с использованием раз-

личных путей синтеза ее механизмов (см. п. 3.4.1.).

     Кинематическая схема поворотного затвора, полученная на осно-

ве анализа трехконтурной формы цепи (с использованием ППП "SSVC"),

реализованной  посредством плоских рычажных механизмов,  приведена

на рис. П.8. Формулу строения данного устройства, согласно (3.35),

можно представить в виде:

    

     Проработка и практическое воплощение полученной  схемы  меха-

низма  совмещенной  структуры  (рис.  П.9) обеспечили рациональное

движение уплотнительного диска  при  перекрывании  и  герметизации

проходного отверстия: поступательное его движение на стадии герме-

тизации и поворот уплотнительного диска на 90 на стадиях  открыва-

ния и закрыванияя затвора при небольшом ходе ведущего звена приво-

да.

     Подобное выполнение устройства приводит к повышению ресурса и

надежности работы затвора за счет исключения неравномерности  сжа-

тия уплотнителя и его трения о седло, а также обеспечения фиксиро-

ванного положения уплотнительного диска  в  каждый  момент  работы

затвора, что устраняет возможность его перекосов [120].


                              - 131 -

     Дальнейшая доработка  рассмотренной  конструкции  обусловлена

оптимизацией   созданного   механизма  по  критерию  Ф  (выражение

(2.21)). Оптимизация проводилась для механизма, расположенного вне

вакуумной полости затвора и являющегося собственно его приводом (с

использованием ППП "Р4").  Целью проектирования явилась  необходи-

мость обеспечения различных передаточных функций на стадиях перек-

рывания и герметизации проходного отверстия. Указанная цель реали-

зована  посредством  использования  двух взаимодействующих типовых

элементарных  механизмов  -  попеременно  работающих  эксцентриков

(рис.  П.10),  причем на стадии перемещения уплотнительного диска,

требующей значительных перемещений  при  малых  усилиях,  работает

эксцентрик с большим эксцентриситетом, а герметизация затвора про-

изводится эксцентриком с маленьким эксцентриситетом.  Подобное вы-

полнение устройства позволяет существенно уменьшить приводное уси-

лие для получения требуемого усилия герметизации [156].

     По отношению к используемым механизмам,  особенно расположен-

ным в вакуумной полости,  наиболее  критичны  сверхвысоковакуумные

конструкции, качество которых зачастую определется дестабилизирую-

щим влиянием  на  рабочую  сверхвысоковакуумную  среду  (величиной

привносимой  дефектности).  В связи с этим одной из основных целей

проектирования сверхвысоковакуумных клапанов и  затворов  является

уменьшение числа тяжелонагруженных пар трения в механизмах,  рабо-

тающих в вакуумной полости ВКА, либо полное их устранение, что на-

иболее труднодостижимо для конструкций плоского типа.  Другим важ-

ным аспектом разработки конструкций с электромеханическим приводом

является использование только одного привода для их функционирова-

ния, что определило цели проектирования описываемых ниже конструк-

ций сверхвысоковакуумных прямопролетных плоских затворов.

     На рис.  П.11, П.11А,Б представлен общий вид сверхвысоковаку-

умного затвора,  в котором механизм, расположенный в вакуумной по-


                              - 132 -

лости, обеспечивает поворот уплотнительного диска для перекрывания

проходного отверстия,  что не требует больших усилий, а герметиза-

ция осуществляется механизмом,  расположенным  вне  вакуумной  по-

лости. Формула строения при этом имеет вид:

            

    

     Подобная конструкция является устройством переменной структу-

ры с отключением механизма перемещения при герметизации:

    

     Достоинством разработанного  механизма  перемещения  уплотни-

тельного диска (рис.  П.11Б) является его большое передаточное от-

ношение  при незначительных габаритах,  что приводит к минимизации

критерия Ф [157].

     Вместе с тем,  рассмотренная конструкция достаточно сложна, а

механизм перемещения из-за расположения в вакуумной полости  труд-

норегулируем,  что определило цель проектирования - удаление меха-

низма из вакуумной полости (замена его механизмом непосредственно-

го действия),  т.е.  генерацию структуры по выражению (3.33).  При

этом формула строения принимает вид:

     Указанная проектная  цель  была  достигнута  в  разработанном

сверхвысоковакуумном затворе с электромеханическим приводом  путем

синтеза зубчато-кулачкового механизма,  расположенного вне вакуум-

ной полости (рис. П.12, П.12А,Б).

     Рассматриваемый затвор является конструкцией нового, ранее не

описанного типа устройств с механизмами  переменной  структуры:  с

отключением механизма герметизации при перекрывании проходного от-

верстия и  с  отключением  механизма  перемещения  уплотнительного

диска при его герметизации,  что отмечено при разработке структур-


                              - 133 -

но-конструктивной классификации ВКА (п.  1.3),  а  формально  было

предопределено при анализе множества возможных формул строения ВКА

(выражение (3.33)).

     Подобное выполнение  устройства позволило исключить механизмы

из вакуумной полости, что повышает ресурс работы затвора, упрощает

его управление и наладку при сохранении автономного (в сравнении с

пневмоуправляемыми конструкциями) привода [158].

     4.4.3. Конструкции ВКА, разработанные на основе использования

            различных физических эффектов.

     При создании конструкций ВКА, описываемых в настоящем разделе

использован программный модуль "VP2".

     Использование ФЭ  в  структуре  ВКА как правило приводит к ее

усложнению и удорожанию,  поэтому их применение  целесообразно,  в

основном,  в  сверхвысоковакуумных  конструкциях,  что объясняется

сложностью и особенностями функционирования подобной ВКА.

     Главным недостатком  цельнометаллической ВКА является большое

усилие герметизации уплотнительной пары, что приводит к повышенной

требуемой мощности привода, росту массо-габаритных характеристик и

снижению ресурса работы устройств.  В связи с этим основной  целью

проектирования  является  уменьшение  действующих  в  ВКА  усилий.

Достичь желаемого позволяет ФЭ,  получивший  название  "гистерезис

натеканий" и заключающийся в возможном снижении после герметизации

УП прикладываемых к ней усилий в 2-3 раза, не приводящем к разгер-

метизации стыка [70, 159].

     С использованием данного ФЭ  разработан  способ  герметизации

цельнометаллического разъемного вакуумного соединения, который мо-

жет быть реализован как с помощью средств управления  [160,  161],

так и с помощью ФЭ, преобразующих немеханическую энергию в механи-


                              - 134 -

ческую [162]. Уточненная с учетом выявленной вспомогательной функ-

ции       - "разгрузить уплотнительную пару" - обобщенная функцио-

нальная структура     , представлена на рис. П.13. Причем выполне-

ние функции     может быть реализовано соответствующим перемещени-

ем уплотнительного диска.

     Конкретная реализация  подобной       получена  в конструкции

сверхвысоковакуумного клапана, приведенной на рис. П.14, использу-

ющей  ФЭ "тепловое расширение" - преобразование тепловой энергии в

механическую (перемещение уплотнительного диска за счет  изменения

линейных размеров штока при нагреве). При этом введение в структу-

ру предлагаемого устройства ФМ "нагреватель",  включение  которого

герметизирует  УП,  а  отключение - разгружает ее (после остывания

штока), позволяет уменьшить усилия в элементах клапана в положении

"закрыто",  избавиться  от перегрузок на уплотнительную пару в мо-

мент герметизации и при прогревах;  снизить мощность используемого

привода,  что  существенно  повышает  надежность  и  ресурс работы

конструкций [163].

     Анализ дерева  целей проектирования,  представленного на рис.

2.8,  позволяет сформировать косвенные пути  решения  поставленной

задачи.  В  частности,  как отмечалось в п.  2.4 уменьшение усилия

герметизации, связанно с изменением свойств материала уплотнителя,

например,  предела его текучести.  Более подробное изучение данной

проблемы показало,  что существенное влияние на этот параметр ока-

зывает  образующаяся  на  поверхности  уплотнителя оксидная пленка

[67]. Таким образом, сформировалась дополнительная функция ВКА

- "удалить оксидную пленку с поверхности уплотнителя".  Уточненная

   , учитывающая данную функцию представлена на рис. П.15. Для ре-

ализации  выявленной  дополнительной  функции  был  использован ФЭ

диссоциации окислов  под  воздействием  потока  электронов  [164].

Конструкция  сверхвысоковакуумного затвора,  позволяющая воплотить

Страницы: 1, 2, 3, 4, 5, 6, 7, 8


на тему рефераты
НОВОСТИ на тему рефераты
на тему рефераты
ВХОД на тему рефераты
Логин:
Пароль:
регистрация
забыли пароль?

на тему рефераты    
на тему рефераты
ТЕГИ на тему рефераты

Рефераты бесплатно, реферат бесплатно, курсовые работы, реферат, доклады, рефераты, рефераты скачать, рефераты на тему, сочинения, курсовые, дипломы, научные работы и многое другое.


Copyright © 2012 г.
При использовании материалов - ссылка на сайт обязательна.