на тему рефераты
 
Главная | Карта сайта
на тему рефераты
РАЗДЕЛЫ

на тему рефераты
ПАРТНЕРЫ

на тему рефераты
АЛФАВИТ
... А Б В Г Д Е Ж З И К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я

на тему рефераты
ПОИСК
Введите фамилию автора:


Реферат: Схемотехническое и функциональное проектирование вакуумной коммутационной аппаратуры


Реферат: Схемотехническое и функциональное проектирование вакуумной коммутационной аппаратуры

         МОСКОВСКИЙ ИНСТИТУТ ЭЛЕКТРОННОГО МАШИНОСТРОЕНИЯ

                                  Для служебного пользования

                                  Экз. N _______

                                  На правах рукописи

                                  УДК 621.52/.646:658.5

                                                      

                     1БАТРАКОВ ВАСИЛИЙ БОРИСОВИЧ

          2СХЕМОТЕХНИЧЕСКОЕ И ФУНКЦИОНАЛЬНОЕ ПРОЕКТИРОВАНИЕ

                 2ВАКУУМНОЙ КОММУТАЦИОННОЙ АППАРАТУРЫ

        Специальность 05.27.07. - Оборудование производства

                                  электронной техники

        Специальность 05.13.12. - Системы автоматизации

                                  проектирования

    

                       Д и с с е р т а ц и я

       на соискание ученой степени кандидата технических наук

                                  Научный руководитель

                           кандидат технических наук, доцент

                                  Львов Борис Глебович

                          Москва - 1992

.

                              - 2 -

                            СОДЕРЖАНИЕ

Введение ....................................................  4

1. Современное состояние работ по созданию вакуумной

   коммутационной аппаратуры ................................ 10

   1.1. Анализ связей ВКА с оборудованием электронной

        техники. Основные требования, предъявляемые к ВКА ... 10

   1.2. Функционально-структурный анализ ВКА ................ 15

   1.3. Структурно-конструктивная классификация ВКА ......... 28

   1.4. Аналитический обзор методов поискового

        конструирования ..................................... 30

   Выводы ................................................... 39

2. Системный анализ вакуумной коммутационной аппаратуры ..... 41

   2.1. Системная модель ВКА при функциональном и схемо-

        техническом проектировании .......................... 41

   2.2. Функции и структура ВКА ............................. 42

   2.3. Свойства ВКА и ее структурных составляющих .......... 55

   2.4. Цели проектирования ВКА ............................. 62

   2.5. Уравнение функционирования и критерии оптималь-

        ности ВКА ........................................... 70

   Выводы ................................................... 73

3. Разработка методологии схемотехнического и функционального

   проектирования ВКА ....................................... 75

   3.1. Методические основы функционального и схемотех-

        нического проектирования ВКА ........................ 75

   3.2. Методика параметрического анализа конструкций ВКА.... 76

   3.3. Методика синтеза структур ВКА ....................... 80

   3.4. Синтез и кинематический анализ механизмов ВКА ....... 94

   3.5. Моделирование процесса функционирования ВКА .........109

   Выводы ...................................................115


                              - 3 -

4. Создание новых конструкций ВКА на базе автоматизации

   схемотехнического и функционального проектирования .......118

   4.1. Программые средства анализа существующих конст-

        рукций ВКА ..........................................118

   4.2. Программные средства синтеза и анализа структур ВКА..121

   4.3. Структурно-функциональная модель САПР ВКА на этапе

        схемотехнического и функционального проектирования...124

   4.4. Конструкции ВКА, разработанные на основе синтезиро-

        ванных структур .....................................128

   Выводы ...................................................135

Заключение ..................................................137

Литература ..................................................140

Приложения ..................................................157

.

                              - 4 -

                            ВВЕДЕНИЕ

     Необходимость всесторонней интенсификации экономики  нераз-

рывно  связана с ускорением научно-технического прогресса,  важ-

нейшими направлениями  которого  являются  создание  и  освоение

принципиально новой техники и технологии,  автоматизация и меха-

низация производства.  Выполнение этих задач  требует,  в  част-

ности, развития вакуумной техники, оказывающей определяющее вли-

яние на создание и производство изделий электроники и все  более

широко используемой в других отраслях промышленности.

     Разработка новых вакуумных технологий предъявляет к вакуум-

ному оборудованию повышенные требования,  разнообразный и меняю-

щийся диапазон значений которых обуславливает необходимость  мо-

дернизации и разработки новых конструкций его элементной базы, в

частности,  вакуумной коммутационной аппаратуры (ВКА): клапанов,

затворов,  натекателей,  служащих для периодического сообщения и

герметичного перекрытия вакуумных коммуникаций и управления  ва-

куумным  режимом.  Конструкцией  и правильной эксплуатацией ВКА,

являющейся неотъемлемой частью вакуумных систем (ВС),  в  значи-

тельной степени определяется надежность работы вакуумного техно-

логического оборудования.  (ВТО). Вместе с тем традиционное про-

ектирование,   основанное  на  интуитивно-эмпирическом  подходе,

исходя из уровня знаний конструктора,  не удовлетворяет в полной

мере ужесточившимся требованиям к созданию ВКА (например,  необ-

ходимости минимального воздействия потоков газовыделения и  заг-

рязнений  на технологическую среду оборудования производства из-

делий электронной техники,  работе при температурах 600 - 800 К,

повышению показателей надежности в десятки раз и т.д.), что осо-

бенно заметно на примере цельнометаллической ВКА, показатели ка-

чества которой, начиная с начала 70-х годов по существу не улуч-


                              - 5 -

шаются. В связи с этим существующие конструкции громоздки, имеют

небольшой  ресурс  и  наработку  на отказ.  Ситуация осложняется

отсутвием единого научно обоснованного подхода к  проектированию

ВКА,  что приводит к неоправданному ее многообразию, низкому ка-

честву конструкций и,  как следствие, к отказам и простоям доро-

гостоящего оборудования при эксплуатации.  Кроме того,  проявля-

ется тенденция к значительному уменьшению сроков  проектирования

ВКА,  которая  наряду  с указанными факторами вызывает необходи-

мость автоматизации процесса проектирования.

     Одним из выходов из сложившейся ситуации является разработ-

ка и применение новых развивающихся методик проектирования, поз-

воляющих  генерировать множество различных технических решений и

проводить целенаправленный их поиск и выбор,  исходя  из  техни-

ческого задания (ТЗ),  имеющего жесткие и иногда полярные требо-

вания.

     Изложенное определило цель настоящей работы,  которой явля-

ется создание научно обоснованной методологии  схемотехнического

и  функционального  проектирования ВКА,  направленной на решение

проблем проектирования ВКА,  с конкретной реализацией в виде но-

вых  конструкций ВКА и программно-информационных средств,  пред-

назначенных для анализа, синтеза и моделирования работы ВКА.

     Принципиально функциональное  и схемотехническое проектиро-

вание ВКА, заключающееся в синтезе и анализе ВКА на этапе техни-

ческого  предложения  и  содержащее оценку свойств ВКА на основе

исследования процессов ее функционирования,  генерацию  и  выбор

принципиальных технических решений, определяющих структуру ВКА с

учетом специфики ее функционирования в  составе  конкретной  ВС,

можно представить в виде последовательности: цель проектирования

- функция - устройство (элементная структура),  которая обуслав-

ливает  необходимость  формального  описания структур,  функций,


                              - 6 -

свойств, объектов для определения проектных целей в виде измене-

ния структур ВКА и определения связей свойств ВКА для построения

этих структур.

     Более детально  модель  процесса  проектирования ВКА на на-

чальных стадиях можно представить в виде алгоритма,  укрупненная

блок-схема которого приведена на рис. 1.

     Согласно представленной блок-схемы,  ТЗ на  разработку  ВКА

определяется требованиями к ВС,  являющейся для ВКА объектом бо-

лее высокого уровня,  а начальным этапом создания  ВКА  является

поиск  аналогов.  Это объясняется нецелесообразностью разработки

новой конструкции ВКА при наличии среди  существующих  вариантов

ВКА конструкции,  полностью удовлетворяющей предъявленным требо-

ваниям.

     В случае отсутствия аналогов необходимо проанализировать ТЗ

для выявления заведомо завышенных требований с целью их  смягче-

ния.  Если данная процедура не приводит к нахождению аналога, то

переходят к поиску прототипа - конструкции ВКА,  наиболее  полно

соответствующей  требованиям ТЗ.  Сравнение параметров выбранной

конструкции ВКА с требуемыми (ТЗ) позволяет сформировать  потре-

бительские  цели проектирования ВКА в виде необходимости измене-

ния соответствующих значений параметров ВКА или  ее  структурных

составляющих.

     Цели и критерии позволяют конструктору осуществлять направ-

ленный поиск и синтез технических решений ВКА.  Исходя из целей,

определяют необходимые функции и функциональные модули,  их реа-

лизующие.  Вводя соответствующие отношения среди найденных функ-

циональных модулей, получают возможные структуры ВКА, из которых

с  помощью  критериев  выбирают  структуру,  наиболее отвечающую

предъявленным требованиям ТЗ  (происходит  достижение  проектной

цели).


                              - 8 -

     Отсутствие среди известных удовлетворительной  функциональ-

ной  структуры или появление новых функций для достижения потре-

бительской цели проектирования ВКА приводит к необходимости син-

теза  физического  принципа действия ВКА,  являющегося этапом ее

функционального проектирования,  появлению новых  функциональных

модулей и повторению этапов схемотехнического проектирования ВКА

для синтеза ее оптимальной элементной структуры.

     Анализ приведенного алгоритма проектирования показал,  что,

помимо отмеченного отсутствия системного описания ВКА,  удобного

для  постановки задач схемотехнического и функционального проек-

тирования,  достижение   поставленной   цели   осложнено   также

отсутствием исследований процесса функционирования ВКА с позиций

схемотехнического проектирования;  формального описания структур

ВКА  и процесса их синтеза;  формализованных научно обоснованных

методов принятия решений при конструировании ВКА,  что позволило

сформулировать следующие основные задачи,  подлежащие решению:

- проведение системного анализа ВКА;

- разработка системной модели процесса  проектирования ВКА;

- разработка методики и математических моделей процесса проекти-

рования ВКА на уровне  формирования  ее  структурных  схем;

- построение и исследование модели функционирования ВКА;

- разработка  формализованных  методов  выбора и критериев опти-

мальности при структурном синтезе ВКА;

- разработка комплекса программных средств автоматизации началь-

ных этапов проектирования ВКА;

- разработка новых конструкций ВКА на основе использования  соз-

данного методического и информационно-программного обеспечений.

     На защиту выносятся:

     1. Системные  модели  ВКА  и  процесса ее функционального и

схемотехнического проектирования.


                              - 9 -

     2. Методика и математические модели функционально-схемотех-

нического проектирования ВКА.

     3. Математические  модели  ВКА  на этапах функционального и

схемотехнического проектирования.

     4. Методика  и математическая модель оценки конструкций ВКА

и ее структурных составляющих.

     5. Результаты исследования математической модели функциони-

рования ВКА и критерии оптимальности конструкций ВКА.

     6. Новый класс ВКА переменной структуры и конструкции ВКА.

.

                              - 10 -

     I. СОВРЕМЕННОЕ СОСТОЯНИЕ РАБОТ ПО СОЗДАНИЮ ВАКУУМНОЙ

                  КОММУТАЦИОННОЙ АППАРАТУРЫ

     I.I. Анализ связей ВКА с оборудованием электронной

          техники. Основные требования, предъявляемые к

          ВКА.

     Вакуум как  рабочая среда технологических процессов и научных

исследований находит возрастающее применение в различных  отраслях

промышленности.  При этом основным потребителем элементов, средств

и систем вакуумной техники является электронная техника,  предъяв-

ляющая наиболее жесткие, зачастую противоречивые и трудно реализу-

емые требования к создаваемым ВС.

     Используемое в  электронной технике вакуумное технологическое

и научное оборудование,  интервалы рабочих давлений основных типов

которого  приведены  на рис.  I.I.,  по величине рабочего давления

можно условно разделить на три группы: 1) установки с рабочим дав-

лением  до  5  10   Па;  2)  установки  с  рабочим  давлением до 1

10   Па; 3) оборудование с рабочим вакуумом выше 1 10   Па.

     Как правило,  получение  вакуума в оборудовании первой группы

достигается применением паромасляных диффузионных насосов с ловуш-

ками,  позволяющими  исключить наличие углеводородных соединений в

рабочей среде;  герметизация разъемных  соединений  осуществляется

резиновыми  прокладками  [I  - 5].  Подобные установки относятся к

непрогреваемым системам,  длительность откачки  которых  определя-

ется,  в основном,  десорбцией паров воды [6 - 8]. Дополнительными

требованиями к установкам данного типа могут служить необходимость

получения определенного спектра остаточных газов [9, 10], исключе-

ние привносимой дефектности на изделие электронной техники  [11  -

15], высокая (до 1600 К) температура в рабочей камере и повышенные


                              - 11 -

требования к надежности работы из-за значительного  экономического

ущерба в случае отказа [16 - 18].

     Оборудование второй группы [19 - 24]  обеспечивает  получение

более низких парциальных давлений остаточных газов. В данной груп-

пе оборудования,  в основном, используют безмасляные (турбомолеку-

лярные,  магнито-  и  электро-разрядные  насосы) и комбинированные

средства откачки [25 - 27]. В качестве уплотнений разъемных соеди-

нений применяются металлические прокладки и прокладки, изготовлен-

ные из термостойкой резины [28, 29]. Как правило, установки второй

группы  прогреваются  до  400  -  650  К (оборудование для откачки

электровакуумных приборов частично до  950  К),  имеют  достаточно

большое время достижения рабочего давления (от 5 до 20 часов) [19,

30 - 33] и более жесткие требования к привносимой на  изделие  де-

фектности [34].

     К третьей группе оборудования принадлежат уникальные системы-

ускорители  заряженных  частиц  [35 - 38],  камеры для космических

исследований и ряд технологических установок  и  научных  приборов

[39,  40].  Их отличие от вакуумных систем второй группы состоит в

необходимости предварительной обработки и очистки  материалов  для

вакуумных систем, длительном времени прогрева и откачки, использо-

вании только металлических уплотнителей в  разъемных  соединениях.

При этом время существования высокого вакуума в рабочем объеме мо-

жет длиться месяцами и годами [29, 41 - 43].

     Общим требованием ко всем группам вакуумного оборудования яв-

ляется автоматизация технологических процессов и научного экспери-

мента [44 - 46].

     В свою очередь, требования к вакуумному оборудованию формиру-

ют требования к его элементной базе,  в том числе к ВКА,  которая,

являясь неотъемлемой частью ВС вакуумного оборудования  (например,

только в одно- и двухкамерных установках число коммутационных уст-


                              - 12 -

ройств колеблется от 5 до 10, достигая 15 [20, 47]), во многом оп-

ределяет его выходные характеристики. Так, производительность обо-

рудования  первой  и  второй  групп  определяется  не  только  его

конструкцией  (однопозиционные  установки периодического действия,

установки полунепрерывного действия со шлюзовыми  камерами,  уста-

новки и линии непрерывного действия и др.),  но и сокращением вре-

мени достижения рабочего давления, зависящим, в частности, от про-

водимости ВКА [48, 49].

     Следует отметить и наметившуюся в последнее  время  в  произ-

водстве изделий электронной техники тенденцию к понижению рабочего

давления до 10   - 10    Па вследствие существенного влияния  дав-

ления и парциального состава газовой смеси на параметры и свойства

изделий [1, 19, 40], т.е. к использованию высоко- и сверхвысокова-

куумного оборудования,  требующего прогрева до 700 - 800 К и, сле-

довательно, применения цельнометаллической ВКА, позволяющей сокра-

тить время достижения сверхвысокого вакуума в 2,5 раза и упростить

обслуживание установок [25,  41]. С учетом отмеченного во введении

критического  состояния проектирования цельнометаллической ВКА це-

лесообразно выделить для детального рассмотрения области ее приме-

нения, которые показаны на рис. I.2.

     При этом, несмотря на достаточно четкую границу между группа-

ми  оборудования с одинаковыми вакуумными характеристиками и усло-

виями эксплуатации,  определяющими основные свойства  ВКА,  к  ней

предъявляется  множество  разнообразных дополнительных требований,

зависящих от конкретного случая использования,  что ведет к увели-

чению номенклатуры ВКА, затрудняя проведение унификации и стандар-

тизации вакуумного оборудования и повышая трудоемкость его  проек-

тирования и изготовления.

     Анализ длительности технологических циклов и  ресурса  работы

оборудования,  проведенный по работам [19, 20, 24, 47, 48], позво-


                              - 14 -

ляет судить о требуемом ресурсе и цикличности работы ВКА и показы-

вает, что число циклов работы клапанов и затворов лежит в пределах

500 - 8000,  а в ряде установок,  имеющих длительность  технологи-

ческого процесса порядка десятков секунд (например, электронно-лу-

чевых установок микросварки),  их ресурс должен  быть  значительно

большим  -  20000 - 50000.  Кроме того,  особенностью ВКА является

кратковременный циклический режим работы с  большими  промежутками

между включениями: отношение времени работы к времени выстоя очень

различно и в среднем находится в пределах 1 :  (100 - 10000). Сум-

марное время нахождения механизмов ВКА в динамическом состоянии до

замены уплотнительной пары составляет для ВКА с металлическим  уп-

лотнителем в среднем примерно 2 - 4 часа,  для ВКА с резиновым уп-

лотнением - 20 - 50 часов.

     Снижение рабочего  вакуума накладывает дополнительные ограни-

чения на разработку ВКА,  связанные  с  необходимостью  уменьшения

влияния  элементов  вакуумной  полости ВКА на параметры технологи-

ческого процесса и учета привносимой  дефектности  [50,  51].  При

этом ряд ответственных сверхвысоковакуумных систем, взамен большо-

го ресурса работы ВКА выдвигает на первый план требования к  быст-

родействию и высокой надежности ее работы [37, 39].

     Таким образом,  анализ назначения ВКА в свете задач, решаемых

современным вакуумным оборудованием, позволил сформировать следую-

щие основные требования, предъявляемые к ВКА.

     ВКА должна:

иметь  заданную  проводимость  в  открытом положении; обеспечивать

требуемое быстродействие;  гарантировать  величину натекания в за-

крытом положении  ВКА не выше допустимой  (например, соизмеримой с

уровнем  газопроницаемости  конструкционных материалов и материала

уплотнителя); допускать эксплуатацию  в диапазоне температур от 77

до 800 К; минимально воздействовать на качественный и количествен-


                              - 15 -

ный состав остаточной среды в вакуумной системе; иметь достаточные

ресурс работы  и наработку на отказ;  предусматривать  возможность

автоматического управления  и контроля за работой;  обладать мини-

мальными  габаритами  и  весом;  обеспечивать простой монтаж и де-

монтаж устройства;  иметь  высокие технолого-экономические показа-

тели.

     I.2. Функционально-структурный анализ ВКА.

     Несмотря на все возрастающую потребность в ВКА,  имеющаяся по

ней литература весьма скудна,  разрознена и носит  большей  частью

описательный  характер.  В  затрагивающих  данную  область работах

практически отсутствуют методики проектирования ВКА,  недостаточны

рекомендации и данные по ее расчету и конструированию [20, 29, 51-

54],  вследствие чего разработка конкретных устройств ВКА в  боль-

шинстве  случаев  основывается  на  опыте  конструктора.  При этом

отсутствие единого научно обоснованного подхода  к  проектированию

ВКА  затрудняет  создание конструкции,  имеющей наилучшие характе-

ристики по всем показателям качества, поэтому существующие вакуум-

ные  клапаны  и затворы удовлетворительно соответствуют лишь 3 - 4

показателям качества,  что приводит к неоправданному  многообразию

их конструкций.

     Достоинства и   недостатки   существующих   конструкций   ВКА

рассмотрим на основе анализа информации, содержащейся в литератур-

ных источниках и каталогах отечественных предприятий-разработчиков

и заводов-изготовителей и передовых в области вакуумного машиност-

роения иностранных фирм [20, 29, 51 - 67].

     На рис.  1.3,  1.4 приведены примеры конструктивных схем ВКА,

дающие представление о  ее  многообразии,  на  рис.  1.5  показаны

основные принципиальные схемы ВКА,  а на рис.  1.6 - типовые схемы


                              - 19 -

ее уплотнительных пар.

     Проанализируем существующие технические решения ВКА с позиций

функционально-структурного  подхода  -  реализации  последователь-

ности: цель - функция - устройство.

     Плоский затвор (рис.  1.5 а, е), имеющий минимальное расстоя-

ние между присоединительными фланцами (цель),  во избежание износа

уплотнителя требует при перемещении улотнительного  органа  1  для

открывания или перекрывания проходного отверстия 2 создания гаран-

тированного зазора между ним и корпусом 3,  что приводит к необхо-

димости осуществления в клапане двух не совпадающих по направлени-

ям движений: перемещения уплотнительного органа 1 для открывания и

перекрывания  проходного отверстия 2 и герметизации уплотнительной

пары (функция),  а,  следовательно, либо к появлению механизма 4 в

вакуумной полости (рис.  1.5, а), либо к использованию двух испол-

нительных органов и соответственно двух вводов движения  в  вакуум

5,5 (рис.  1.5,  е) (устройство).  Оба решения существенно снижают

надежность и ресурс работы  устройства,  а  второе  приводит  и  к

усложнению управления затвором.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8


на тему рефераты
НОВОСТИ на тему рефераты
на тему рефераты
ВХОД на тему рефераты
Логин:
Пароль:
регистрация
забыли пароль?

на тему рефераты    
на тему рефераты
ТЕГИ на тему рефераты

Рефераты бесплатно, реферат бесплатно, курсовые работы, реферат, доклады, рефераты, рефераты скачать, рефераты на тему, сочинения, курсовые, дипломы, научные работы и многое другое.


Copyright © 2012 г.
При использовании материалов - ссылка на сайт обязательна.