на тему рефераты
 
Главная | Карта сайта
на тему рефераты
РАЗДЕЛЫ

на тему рефераты
ПАРТНЕРЫ

на тему рефераты
АЛФАВИТ
... А Б В Г Д Е Ж З И К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я

на тему рефераты
ПОИСК
Введите фамилию автора:


Реферат: Схемотехническое и функциональное проектирование вакуумной коммутационной аппаратуры


образуют множество функциональных структур              .  На рис.

2.2 показано множество типовых функциональных  структур  ВКА,  где

вершины                 - основные базовые функции ВКА (см.  табл.

2.2).

     В свою  очередь  каждой базовой функции     можно поставить в

соответствие некий реализующий ее  обобщенный  родовой  элемент  -

функциональный модуль,  являющийся абстрактным объектом    , обла-

дающим неким множеством общих свойств и имеющим множество  вариан-

тов  исполнения,  которые наследуют общие свойства ФМ и отличаются

от него оригинальными свойствами [119]. Таким образом, абстрактная

структура                имеет множество взаимосвязанных абстракт-

ных родовых элементов          , исполняющих базовые функции    .

     Установим требуемые  соответствия            :      - функция

привода (ФМ );     - множество типов приводов;     - функция меха-

низма  преобразования движения (ФМ );      - множество механизмов;

    - функция вакуумного ввода движения (ФМ );     - множество ти-

пов вводов движения;      - функция механизма перемещения уплотни-

тельного диска и герметизации (ФМ );      - множество  механизмов;

    - функция уплотнительной пары (ФМ ) - условного ФМ, образуемо-

го седлом и уплотнительным диском;      - множество типов уплотни-

тельных  пар;      - функция корпуса (ФМ );      - множество типов

корпусов.  На рис. 2.3 показано множество обобщенных структур    .

ВКА,  в котором вершины    ,     = 1,6 - вышеописанные абстрактные

ФМ.

     Структура     является основой для построения морфологической

структуры     ВКА,  которую  с  позиций  функционально-схемотехни-

ческого  проектирования ВКА целесообразно и достаточно представить

двухуровневым деревом. Первый уровень - ВКА как техническая систе-

ма  в целом,  второй уровень - функциональные модули ВКА,  где П -


                              - 50 -

привод; ВД - вакуумный ввод движения; УП - уплотнительная пара; М1

- механизм преобразования движения;  М2 - механизм перемещения уп-

лотнительного диска; К - корпус. Намечен третий иерархический уро-

вень   -   множество   вариантов   ФМ.  Морфологическая  структура

          ,          имеет два подмножества вершин:              -

типы ФМ (вершины "и") и             - множество вариантов исполне-

ния типов     (вершины "или"), а также два подмножества отношений:

    - отношения включения между элементами    ,      - родовидовые

отношения между     и     .  Структура     описывается графом типа

дерева,  представленном на рис.  2.4,  где    - вершины "и",     -

вершины "или" (конкретизация графа - рис. 1.12). Возможно дальней-

шее  расширение данного дерева и вглубь и в ширину.  При этом раз-

ветвление дерева произойдет в случае появления новых вариантов  ФМ

в  результате анализа возможности применения в ВКА их существующих

воплощений (например,  электрических приводов [71]) или  появления

новых дополнительных ФМ [79].

     Замена абстрактных элементов     вариантами их исполнения

    образует вариантную структуру             .

     Если на множестве конкретных вариантов      ввести  отношения

соединения    ,  получим множество элементных структур           .

При этом декартово произведение                                  ,

определяет множество всевозможных вариантов решений      для обоб-

щенной структуры ВКА.  Отличие структуры     от     состоит в том,

что   множество  элементов  в  ней  имеет  конкретное  имя  вместо

абстрактного,  а абстрактные отношения связи     заменены на конк-

ретные отношения соединения     .  На рис. 2.5 показан граф струк-

туры      одного из вариантов ВКА [120] (рис.  1.4,  а), в котором

вершины:        - "ручной привод",      - "эксцентриковый механизм

преобразования движения",      - "сильфонный ввод движения в ваку-

ум",      - "рычажный механизм перемещения уплотнительного диска",


                              - 53 -

     - "резино-металлическая уплотнительная пара",      - "проход-

ной корпус".

     Компоновочная структура      есть развитие графа    , отража-

ющая компоновку ВКА:              ,  где     - множество элементов

из    ;       -  множество  пространственных  отношений  взаимного

расположения, принадлежности, направления, характеризуемых поняти-

ями типа  "перпендикулярно",  "параллельно",  "соосно",  "внутри",

"снаружи", "по оси Х" и т.п.

     Таким образом, ВКА представляет собой некий состав определен-

ным образом взаиморасположенных и взаимосвязанных ФМ, что позволя-

ет сформулировать следующие утверждения, объясняющие некоторые ра-

нее приведенные положения.

     Утверждение 1.  В структуре ВКА обязательно существуют привод

и  уплотнительная пара,  в противном случае ВКА функционировать не

будет.

     Утверждение 2.  В  случае  корпусного выполнения ВКА уплотни-

тельная пара всегда расположена внутри корпуса,  в  то  время  как

привод расположен с внешней стороны корпуса.

     Следует отметить, что в ВТО бескорпусное выполнение ВКА прак-

тически не используется.

     В соответствии с утверждением 2 передача движения от ФМ "при-

вод"  к  элементу  "уплотнительный диск" ФМ  "уплотнительная пара"

влечет за собой появление обязательного ФМ  "ввод движения в ваку-

ум"  (с  новой  рабочей функцией       "передавать движение из ат-

мосферы в вакуум"),  связанного с ФМ  "корпус" (функция       "со-

держать вакуумную среду"), определяющего взаимосвязь ФМ:

               ФМ          ФМ  (ФМ  )        ФМ              (2.8)

где         - знак отношения следования.

     Перечисленные ФМ являются для ВКА  основными  (обязательными)

ФМ,   что   подтверждает  и  проведенный  анализ  ее  существующих


                              - 54 -

конструкций (п. 1.2).

     Каждый из   перечисленных  ФМ  обладает  собственным  набором

свойств, позволяющих реализовать свою рабочую функцию     и харак-

теризуемых  согласно (2.7) соответствующими        и        .  При

этом главным условием возможности сопряжения ФМ является  идентич-

ность        предшествующего ФМ (с функцией    ) с       последую-

щего ФМ (с функцией    ).  В случае несогласования     и    , т.е.

при                 ,  необходимо включение ФМ (со вспомогательной

функцией     ) такого, что:

                            и                             (2.9)

     Из этого вытекает следующее утверждение:

     Утверждение 3. Если значения функциональных параметров сопря-

гаемых ФМ ВКА не совпадают,  то между ними располагается вспомога-

тельный ФМ, их согласующий.

     Предположив, что в общем случае      и      ФМ из (2.8) между

собой не согласованы, введем по каждому следованию вспомогательные

ФМ.  Поскольку такими параметрами основных  ФМ  являются  характе-

ристики  движения,  то вспомогательными ФМ ВКА являются механизмы,

что нашло отражение в таблице 2.2 и в описании структуры    ,  где

каждой     поставлен в соответствие определенный ФМ -     .

     При этом множество функций       для всех действий ВКА форми-

рует  полную  функциональную структуру и соответствующие ей полную

абстрактную и вариантную структуры, включающие максимально возмож-

ное  количество ФМ,  реализующих основную функцию     .  Например,

согласно таблице 2.2,  ВКА может иметь до  трех  приводов,  вводов

движения и соответственное число механизмов [121]. Подобные струк-

туры весьма сложны,  а при необходимости дальнейшего членения  ВКА

получаются громоздкими и труднообозримыми,  поэтому при рассмотре-

нии целесообразно проводить их декомпозицию путем разбиения на от-

дельные фрагменты [119]. Обобщенные структуры     (рис. 2.3) отоб-


                              - 55 -

ражают данный подход, используя тождество функций:

                                            = 1,4         (2.10)

     Следующим этапом системного анализа ВКА является  определение

ее свойств.

     2.3. Свойства ВКА и ее структурных составляющих.

     Важность определения  свойств  в конструировании ВКА заключа-

ется в том,  что ее интегративные свойства, заданные в виде требо-

ваний в ТЗ, определяются свойствами структурных составляющих (ФМ),

которые, образуя при взаимодействии структуру ВКА, порождают новые

свойства ВКА как целого.

     Конкретизация свойств требует анализа окружения ВКА -  всего,

не  принадлежащего ВКА,  но связанного с ней и оказывающего на нее

существенное влияние,  которое можно представить состоящим из сле-

дующих компонентов:

                                                          (2.11)

где  соответственно:       - управляющие объекты (человек,  робот,

ЭВМ);      - эксплуатация на всех стадиях существования ВКА;     -

взаимодействующие (сопряженные) ТО (камеры,  трубопроводы и т.п.);

     -  производство;       -  технологический  процесс,  которому

способствует  ВКА;      - изготавливаемое изделие;      - источник

энергии;      - режимы функционирования;      -  окружающая  среда

эксплуатации.

     Взаимодействие ВКА с окружением порождает множество связей

   , требования которых, в свою очередь, определяют то или иное

свойство ВКА.  На рис. 2.6 показан мультиграф связей ВКА с окруже-

нием,  где                      ;           ,     = 1,9; позволяю-

щий выявить множество соответствующих свойств ВКА,  которые обычно

группируют по следующим классам: функциональные, эксплуатационные,


                              - 56 -

производственные и конструктивные свойства.

     Под функциональными  свойствами       будем понимать свойства

ВКА, проявляющиеся при реализации ее целевой функции и описываемые

параметрами действия.  Их состав в общем случае:             , где

    - проводимость,     - герметичность,     - быстродействие, ха-

рактеризуемое параметрами     - проводимость,      - суммарное на-

текание,  складывающееся из      - натекания через ввод движения в

вакуум,      - натекания через уплотнительную пару;      - натека-

ние через корпусные детали;     ,      - время открывания и  время

закрывания соответственно.

     Эксплуатационные свойства     ВКА - это свойства, проявляющи-

еся при ее взаимодействии на всех стадиях эксплуатации:  хранении,

транспортировании,  функционировании,  обслуживании   и   ремонте.

Основными свойствами     являются: надежность, ремонтопригодность,

сохраняемость,  эргономичность. Они характеризуются следующими па-

раметрами ВКА:     - средний ресурс;     - наработка на отказ;

- среднее время восстановления;      -  периодичность  профилакти-

ческих  ремонтов;       - допускаемая температура прогрева;      -

предел применения по вакууму;      - допустимая частота включения;

    - возможность работы в любом положении;      - поток газовыде-

ления;      - сохранение герметичности при  обесточивании;       -

сохранение  герметичности  при большем давлении под уплотнительным

диском;     - возможность открытия против атмосферы;     - возмож-

ность  аварийного срабатывания;      - возможность замены уплотни-

тельной пары без демонтажа ВКА;      -  возможность  регулирования

усилия герметизации без демонтажа;      - удобство контроля за ра-

ботой;      - возможность использования в АСУ ТП;     - тип приво-

да;       - мощность привода;      - энергетическая характеристика

привода;      - затраты на эксплуатацию;     - показатель вибраци-

онности;     - необходимость охлаждения при прогреве.


                              - 57 -

     Производственные свойства       ВКА  проявляются  во  взаимо-

действии с производством. С точки зрения конструирования к ним от-

несем технологические и экономические свойства, основными из кото-

рых являются трудоемкость,  материалоемкость,  энергоемкость.  ВКА

характеризуется следующими параметрами свойств    :     - трудоем-

кость изготовления;      - коэффициент унификации;     - коэффици-

ент применяемости материалов;      - коэффициент сборности;      -

стоимость;     - экономическая эффективность.

     Конструктивные свойства      проявляются  при  взаимодействии

структурных  составляющих ВКА и во многом определяются конструкто-

ром.  К параметрам свойств     ВКА относятся:     - диаметр услов-

ного прохода;      - масса;     - габариты (    - длина,     - ши-

рина,      - высота);      - расстояние  между  присоединительными

фланцами;       -  взаимное расположение осей проходных отверстий;

    - показатель патентной чистоты.

     Мультиграф связей  между  ВКА,  отражающий  их многообразие и

позволяющий сформировать требуемые для последующего анализа табли-

цы связей, представлен на рис. 2.7.

     Следует отметить,  что предложенный состав свойств в выделен-

ных  классах  не  является постоянным и может изменяться в зависи-

мости от конкретных рабочих функций проектируемой  ВКА,  т.е.  при

изменении окружения и предъявлении новых требований к ВКА.

     Для анализа свойств ВКА построим  таблицу  связей  выделенных

параметров (таблица 2.3), в которой 1 обозначает наличие связи па-

раметров, 0 - отсутствие таковой, т.к. графовое представление свя-

зей  в  данному случае трудно реализуемо вследствие большого числа

параметров и отношений между ними. Таблица связей позволяет: опре-

делить  необходимые для конструирования связи между свойствами ВКА

и требованиями окружения, сформировать системную модель для форма-

лизации процессов проектирования; определить влияние изменения ка-


                              - 60 -

кого-либо параметра на другие,  с целью нахождения конфликтных си-

туаций;  выявить необходимые для теоретических и экспериментальных

исследований неизвестные ранее взаимосвязи;  формализовать  анализ

изменений  при корректировке ТЗ и адаптации проектирования при из-

менении окружения     .

     Структурные составляющие (ФМ ) ВКА,  являясь ее неотъемлемыми

элементами,  имеют также собственные свойства,  во многом отличные

от  свойств,  присущих  ВКА  в  целом,  что обусловлено изменением

состава окружения ФМ  по сравнению с ВКА. При этом свойства ФМ ВКА

определим по аналогичной модели:

                                                          (2.12)

где     - множество свойств    -го ФМ;     ,    ,    ,     - соот-

ветственно  множества  функциональных,  эксплуатационных,   произ-

водственных и конструктивных свойств    -го ФМ;     = 1,6 - индекс

принадлежности соответствующему (см. п. 2.2.2) ФМ ВКА.

     Рассмотрим подробно параметры свойств основных ФМ ВКА.

     В качестве основных параметров свойств ФМ  - привод - выделим

следующие:    - мощность;    -  принцип действия;    - номинальный

момент;    - номинальная частота вращения/скорость  движения  што-

ка;    -  точность  позиционирования;    -  ход штока;    - надеж-

ность;    - ресурс;    - ремонтопригодность;    -  простота  изго-

товления;    - простота сборки;    - стоимость;    - масса;      -

габариты;    - расположение осей вала или штока;    - вид  и  нап-

равление движения.

     Взаимосвязи свойств ФМ  отражены в таблице 2.4. При этом +1 -

означает увеличение параметра в столбце при увеличении параметра в

строке;  -1 - уменьшение параметра в столбце при увеличении  пара-

метра в строке.

     К основным параметрам свойств ФМ  - ввод движения в вакуум  -

относятся:    -  передаваемое  усилие;    -  передаваемый крутящий


                              - 62 -

момент;    -  частота  вращения;    -  величина  перемещения;    -

скорость перемещения;    - надежность;    - ресурс;     - ремонто-

пригодность;    - предел применения  по вакууму;    -  температура

прогрева;    -  натекание  через  уплотнение;    -  воздействие на

состав остаточной среды;    - простота изготовления;    - простота

сборки;    -  стоимость;    -  габариты;    - масса;    - материал

уплотнения;    - расположение осей вала или штока;    - вид и нап-

равление передаваемого движения.

     Взаимосвязи свойств ФМ  отражены в таблице 2.5.

     Основными  параметрами  свойств  ФМ  - уплотнительная  пара -

являются:    - герметичность;    - усилие герметизации;    -  тем-

пература прогрева;    - ресурс;    - наработка на отказ;    - пре-

дел применения по вакууму;    - воздействие на  состав  остаточной

среды;    - удобство замены УП;    - ремонтопригодность;    - воз-

можность работы в агрессивных средах;    - трудоемкость изготовле-

ния;    -  наличие дефицитных и драгоценных материалов;    - стои-

мость;    - стоимость;    -  точностные  характеристики  элементов

УП;    -  размер  проходного  сечения;    -  габариты;    - масса;

    - материал уплотнителя;    - геометрия уплотнителя.

     Взаимосвязи свойств ФМ  отражены в таблице 2.6.

     Большой интерес представляет также анализ связей свойств, ха-

рактеризующих ВКА в целом со свойствами ее основных ФМ.  Указанные

связи существенных параметров ВКА и ее ФМ отражены в таблице 2.7 и

позволяют формировать альтернативные пути изменения свойств ВКА  в

зависимости от требований ТЗ.

     2.4. Цели проектирования ВКА.

     Важной системной характеристикой,  описывающей процесс проек-

тирования ВКА,  является цель проектирования (компонент    в выра-


                              - 66 -

жении (2.2)).

     Желаемое целевое состояние ВКА,  которым должна обладать син-

тезируемая конструкция,  задается техническими требованиями в  ТЗ.

Однако самой цели как движущей силы процесса конструирования ВКА в

ТЗ не содержится, т.к. среди существующих конструкций возможно на-

личие аналога, отвечающего заданным техническим требованиям.

     Исходя из выражения (2.1),  конкретную конструкцию, реализую-

щую  заданную  функцию    и  имеющую  фиксированную структуру    ,

опишем определенным набором параметров:

                                                          (2.13)

где   - множество  имен  свойств  ВКА;    -  множество  параметров

свойств  ВКА;    - множество значений параметров свойств ВКА;    =

=   ,    - номер рассматриваемой конструкции;   - число существую-

щих конструкций ВКА.

     ТЗ, в свою очередь,  есть ни что иное,  как подобное описание

требуемой конструкции:

                                                          (2.14)

где   ,   ,    - соответственно требуемые имена свойств ВКА, пара-

метры свойств и их значения.

     Поиск аналогов    осуществляется   сравнением   характеристик

свойств выражения (2.13) для различных    с соответствующими  зна-

чениям выражения (2.14). Эквивалентность имен (   и   ) и парамет-

ров свойств (   и   ), а также выполнение условия        означает,

что конструкция под номером    является аналогом для данного ТЗ. В

противном случае,  когда ни одна из известных конструкций  ВКА  не

удовлетворяет ТЗ по одному или нескольким параметрам свойств, мож-

но говорить о возникновении потребительских целей  проектирования,

как  необходимости изменения значений параметров ВКА или ее струк-

турных составляющих, которые в общем случае представимы в виде:

                                                          (2.15)


                              - 67 -

где   - множество параметров ВКА,  не удовлетворяющих  требованиям

ТЗ,   - множество отношений типа "изменить".

     Наличие взаимосвязей свойств ВКА со свойствами ее структурных

составляющих  (см.  п.  2.3)  обуславливает возможность достижения

требуемых значений параметров ВКА за счет изменения свойств ее ФМ,

приводящего к изменению структуры ВКА, и определяет проектную цель

в виде:

                                                          (2.16)

     Очевидно, что  для  достижения  необходимых  значений   соот-

ветствующих  параметров  свойств  ВКА - целей,  необходимо выявить

связанные с ними ФМ ВКА и параметры их свойств,  которые,  в  свою

очередь, становятся целями (подцелями) и требуют выявления связан-

ных с ними параметров подсистем нижнего уровня.  Выявленная иерар-

хия образует дерево целей проектирования,  для построения которого

используются таблицы связей параметров свойств.

     Следует отметить, что зачастую достижение общей цели проекти-

рования ВКА требует рассмотрения примитивных целей - изменения па-

раметров элементарных свойств деталей,  вызывая необходимость чле-

нения ВКА до соответствующего уровня.

     Сложность взаимосвязей свойств ВКА и свойств ее ФМ затрудняет

построение обобщенного дерева целей, поэтому его целеообразно фор-

мировать для конкретной ситуации.

     Исходя из вышесказанного,  в качестве объекта  проектирования

принята наиболее сложная и наименее проработанная группа устройств

- сверхвысоковакуумная цельнометаллическая ВКА.  Анализ  патентных

источников класса    ,  отражающих случаи конкретного проектирова-

ния ВКА, позволил выделить основные компоненты множества    :    -

"уменьшить (понизить)";    - "увеличить (повысить)";    - "обеспе-

чить (расширить)";    - "исключить".

     Выберем цель   проектирования:    -  "уменьшить  потребляемую


                              - 68 -

мощность" и на основе анализа  таблиц  связей  параметров  свойств

(таблицы 2.3 - 2.7) построим дерево целей,  представленное на рис.

2.8,  где    - свойства ВКА в целом;   ,   = 1,6 - свойства  соот-

ветствующих ФМ ВКА;     ,    = 1,5 - структуры ФМ ВКА.

     Построенное дерево целей позволяет выявить  существенные  от-

носительно поставленной цели    параметры,  являющиеся ее подцеля-

ми:           .  При этом путь  на  дереве  до  выбранной  подцели

условно можно считать задачей проектирования.

     Реализация подцелей приводит к возникновению  вспомогательных

функций    .  Причем вспомогательных функций может быть несколько,

выполняемых совместно или в определенной последовательности.  Цель

может  порождать  и несколько альтернативных вспомогательных функ-

ций,  каждая из которых, в свою очередь, может быть исполнена раз-

личными  способами действий.  Проанализируем одну из подцелей рис.

2.8:  "уменьшить предел текучести материала  уплотнителя".  Данная

цель  может  принципиально быть реализована двумя путями:  заменой

материала или поиском уменьшения    имеющегося материала. Рассмот-

рим второй путь.  Изучив физическую природу текучести, можно выде-

лить причины, от которых она зависит: температура материала, нали-

чие  дислокаций  в материале и оксидной пленки на его поверхности,

определяющие соответственные вспомогательные функции:    - "нагре-

вать уплотнительную пару",    - "перемещать дислокации в материале

уплотнителя",      - "удалить оксидную пленку с поверхности уплот-

Страницы: 1, 2, 3, 4, 5, 6, 7, 8


на тему рефераты
НОВОСТИ на тему рефераты
на тему рефераты
ВХОД на тему рефераты
Логин:
Пароль:
регистрация
забыли пароль?

на тему рефераты    
на тему рефераты
ТЕГИ на тему рефераты

Рефераты бесплатно, реферат бесплатно, курсовые работы, реферат, доклады, рефераты, рефераты скачать, рефераты на тему, сочинения, курсовые, дипломы, научные работы и многое другое.


Copyright © 2012 г.
При использовании материалов - ссылка на сайт обязательна.