на тему рефераты
 
Главная | Карта сайта
на тему рефераты
РАЗДЕЛЫ

на тему рефераты
ПАРТНЕРЫ

на тему рефераты
АЛФАВИТ
... А Б В Г Д Е Ж З И К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я

на тему рефераты
ПОИСК
Введите фамилию автора:


Дипломная работа: Термодинамика химической и электрохимической устойчивости медно-никелевых сплавов


Дипломная работа: Термодинамика химической и электрохимической устойчивости медно-никелевых сплавов

Дипломная работа

"Термодинамика химической и электрохимической устойчивости медно-никелевых сплавов"


Введение

В группу медно-никелевых сплавов входят такие сплавы на основе меди, в которых никель является основным легирующим компонентом, оказывающим решающее влияние на свойства. В зависимости от содержания никеля и других легирующих компонентов, такие сплавы обладают различными физико-механическими характеристиками: прочностью, пластичностью, коррозионной стойкостью, жаропрочностью и жароупорностью и другими свойствами.

Медно-никелевые сплавы используются в различных областях промышленности, начиная от судостроения и заканчивая изготовлением деталей прецизионных механизмов. Очень часто изделия из медно-никелевых сплавов работают в агрессивных коррозивных средах: морской воде, парах воды и других газах.

Именно поэтому исследования коррозионного поведения медно-никелевых сплавов в различных условиях широко проводились и проводятся.

Целью данной работы является изучение термодинамики химической и электрохимической устойчивости мельхиоров МН19 и МНЖМц30–1–1.


1. Литературный обзор

1.1 Медно-никелевые сплавы

1.1.1 Классификация и общая характеристика медно-никелевых сплавов

Медно-никелевые сплавы по механическим, физико-химическим свойствам и областям применения можно условно разделить на следующие основные группы: конструкционные, термоэлектродные, сплавы сопротивления и сплавы с особыми свойствами [1].

В России маркировку сплавов проводят следующим образом:

Каждый элемент, входящий в сплав имеет своё собственное буквенное обозначение. Некоторые из них представлены в табл. 1.1.

Табл. 1.1. Буквенные обозначения некоторых элементов в России

Элемент Обозначение Элемент Обозначение
Zn Ц Pb С
Mn Мц Fe Ж
Al А Si К
Ni Н P Ф
Sn О Ti Т
Be Б Cr Х
Cu М

 

Название сплава состоит из букв элементов, входящих в него. Вначале ставятся буквы основных компонентов, определяющих свойства сплава, а затем буквы остальных компонентов в порядке уменьшения содержания этих элементов в сплаве. Среднее содержание элементов в сплаве указывается цифрами, разделёнными тире, сразу после буквенного обозначения сплава в том же порядке, в котором расположены буквы элементов в названии сплава. Содержание основного компонента не указывается, а рассчитывается как разность 100% и суммарного содержания всех легирующих компонентов.

Например, сплав МН10 содержит в своём составе 10% (по массе) никеля (Н), остальное – медь (М). Сплав МНЦС16–29–1,8 содержит в своём составе 16% никеля (Н), 29% цинка (Ц), 1,8% свинца (С), остальное – медь (М) [2].

К конструкционным сплавам относят мельхиоры, нейзильберы и некоторые другие сплавы. Их применяют для изготовления деталей с повышенными механическими и коррозионными свойствами (см. табл. 1.2.).

Табл. 1.2. Свойства и назначения некоторых конструкционных медно-никелевых сплавов

Название и марка сплава Типичные механические свойства Примерное назначение

Мельхиор МН19 35 35 70 Медицинский инструмент, детали точной механики, изделия широкого потребления
Мельхиор МНЖМц30–1–1 38 45 70 Трубы для конденсаторов
Нейзильбер МНЦ15–20 40 45 70 Детали приборов точной механики, техническая посуда, художественные изделия, изделия широкого потребления

Мельхиоры содержат 20 – 30% никеля и часто дополнительно легируются железом и марганцем. Нейзильберы относятся к тройной системе Cu – Ni – Zn и содержат 5 – 35% никеля и 13 – 45% цинка [3].

Также в группу конструкционных сплавов входят нейзильбер МНЦС16–29–1,8, используемый в производстве деталей часовых механизмов, куниали МНА6–1,5 и МНА13–3, из которых изготовляют детали повышенной прочности и пружины ответственного назначения, сплавы МН5 и МНЖ5–1, используемые в производстве прутьев и труб и другие сплавы.

Важнейшими представителями термоэлектродных сплавов являются хромель, алюмель, копель и сплавы для компенсационных проводов. Эти сплавы отличаются большой электродвижущей силой и высоким удельным электросопротивлением при малом температурном коэффициенте электросопротивления. Применяются они для изготовления прецизионных приборов, термопар и компенсационных проводов к ним.

Например, копель (МНМц43–0,5) применяют для создания радиотехнических приборов и в пирометрии, сплав МН0,6 – как компенсационные провода к платино-платинородиевым термопарам, а сплав МН16 – как компенсационные провода к платино-золотым и палладий-платинородиевым термопарам.

Наконец, к группе сплавов сопротивления и сплавов с особыми свойствами относятся сплавы, обладающие высокой жаропрочностью и жароупорностью и применяющиеся для изготовления разного рода электронагревательных приборов и электропечей.

Например, константан (МНМц40–1,5) применяется для производства реостатов, термопар, нагревательных приборов, работающих при температурах до 500оС. Манганин (МНМц3–12) используется в производстве электроизмерительных приборов и приборов электросопротивления, работающих при температурах ниже 100оС [1].

1.1.2 Влияние примесей на свойства медно-никелевых сплавов

Добавки других элементов в медно-никелевые сплавы в качестве легирующих компонентов или их присутствие в качестве примесей существенно влияет на механические, технологические и физико-химические свойства этих сплавов.

Алюминий значительно растворяется, как в меди, так и в никеле. Его часто добавляют в сплавы как раскислитель и дегазатор. Добавки алюминия несколько увеличивают прочность и пластичность, но не влияют на электропроводность и термоэдс. Также они понижают температуру магнитных превращений.

Железо значительно облегчает процессы обработки сплавов, однако значительно понижает их жаропрочность и термоэдс. Поэтому примеси железа в термоэлектродных сплавах и сплавах сопротивления нежелательны. Однако добавки железа к мельхиорам повышают их стойкость против ударной коррозии.

Кремний ограниченно растворим как в никеле, так и в меди и иногда применяется в качестве раскислителя. Кремний снижает пластичность сплавов, вызывая брак по трещинам при обработке давлением. На термоэлектродные сплавы кремний влияет отрицательно, и его содержание не должно превышать 0,002%. В сплавах сопротивления кремния может быть не больше 0,1%.

Марганец положительно влияет на механические свойства и жаростойкость медно-никелевых сплавов. Кроме того, марганец является хорошим раскислителем, он парализует вредное влияние серы. Полезно добавлять марганец в мельхиоры, так как он устраняет хрупкость сплавов после отжига при наличии в них углерода.

Магний иногда применяется в качестве раскислителя и дегазатора. Также он парализует вредное влияние серы.

Цинк является одним из основных компонентов в нейзильберах. Однако он является вредной примесью в термоэлектродных сплавах и сплавах сопротивления из-за того, что легко испаряется.

Хром растворим в никеле в твёрдом состоянии, причём при нагревании растворимость повышается. Хром повышает электросопротивление и жаростойкость.

Сера является очень вредной примесью. При затвердевании её соединения с никелем выделяются по границам кристаллитов, придавая сплаву хрупкость. При содержании серы 0,01% сплавы легко разрушаются при обработке давлением. Вредное действие серы можно нейтрализовать, вводя в сплавы марганец, магний или литий.

Кислород также отрицательно влияет на медно-никелевые сплавы. Сплавы, содержащие кислород склонны к «водородной болезни». Кроме того, он придаёт сплавам хрупкость.

Углерод ничтожно мало растворим в медно-никелевых сплавах. При содержании никеля 30% растворимость углерода составляет всего лишь 0,045%. При содержании углерода выше предела растворимости, он выделяется в виде графита по границам кристаллитов, что способствует быстрому разрушению готовых изделий от интеркристаллитной коррозии.

Висмут и свинец – вредные примеси. При их содержании более 0,002% сплавы легко разрушаются при горячей обработки давлением. Свинец вводится лишь в нейзильбер МНЦС16–29–1,8 для улучшения его обрабатываемости резанием. Но этот сплав можно обрабатывать давлением только в холодном состоянии.

Сурьма и мышьяк – вредные примеси. Они резко ухудшают обрабатываемость сплавов давлением.

Фосфор и кадмий – вредные примеси, так как они резко снижают механические, физические и технологические свойства сплавов.

Добавки кальция, бора и циркония в количестве до 0,05 – 0,1% несколько увеличивают пластичность [1].

1.1.3 Характеристики мельхиоров МН19 и МНЖМц30–1–1

Мельхиор МН19 отличается высокой коррозионной стойкостью, высокими механическими свойствами, хорошо обрабатывается давлением в горячем и холодном состоянии. Листы и ленты из МН19 применяют для изготовления разменной монеты, медицинского инструмента, сеток, деталей в точной механике и химической промышленности, а так же для производства изделий широкого потребления.

Мельхиор МНЖМц30–1–1 обладает хорошими механическими свойствами, удовлетворительно обрабатывается давлением в горячем и холодном состоянии. Отличительной особенностью МНЖМц30–1–1 является его высокая коррозионная стойкость в пресной и морской воде и в парах воды. Поэтому он широко применяется в морском судостроении, главным образом, для изготовления конденсаторных труб, работающих в тяжёлых условиях при повышенных скоростях воды, давлениях и температурах, где медные и латунные трубы неприемлемы.

МНЖМц30–1–1 наиболее стоек (из всех известных сплавов) против ударной (струевой) коррозии. Однако даже он может разрушаться при очень больших скоростях воды (более 2 м/с) или в присутствии пузырьков воздуха или СО2.

Мельхиоры быстро корродируют в минеральных кислотах (особенно, в азотной), но незначительно – в органических. Мельхиоры стойки к атмосферной коррозии, сухие газы (галогены) также не действуют на них при комнатной температуре.

Щёлочи и щелочные растворы солей и органических соединений (CCl4, CHCl3) очень незначительно влияют на мельхиоры, однако в растворах аммиака и солей аммония скорость их коррозии возрастает.

В расплавленных металлах (Sn, Pb, Zn, Al, припои) мельхиоры быстро разрушаются.

Химический состав мельхиоров МН19 и МНЖМц30–1–1 по ГОСТ 492–73 представлен в табл. 1.3. Механические, физические и технологические свойства мельхиоров представлены в табл. 1.4. Скорости коррозии мельхиоров в различных средах приведены в табл. 1.5 [1].

Табл. 1.3. Химический состав мельхиоров МН19 и МНЖМц30–1–1 (по ГОСТ 492–73)

Химический состав Марка мельхиора
МН19 МНЖМц30–1–1
Компоненты, % Cu Ост. Ост.
Ni 18,0 – 20,0 29,0 – 33,0
Fe - 0,5 – 1,0
Mn - 0,5 – 1,0

Примеси, %,

не более

Si 0,15 0,15
Mg 0,01 -
Mn 0,01 -
Fe 0,3 -
Pb 0,005 0,05
S 0,01 0,01
C 0,05 0,05
P 0,010 0,006
Bi 0,002 -
As 0,010 -
Sb 0,005 -
Всего 0,6 0,4

Табл. 1.4. Механические, физические и технологические свойства мельхиоров МН19 и МНЖМц30–1–1

Свойство или

характеристика

Марка мельхиора
МН19

МНЖМц

30–1–1

Температура плавления, оС:

ликвидус 1190 1230
солидус 1130 1170

Плотность,

8,9 8,9

Теплопроводность,

при температуре, оС:

20 0,092 0,089
200 - 0,088

Температурный коэффициент

теплопроводности при 20 – 200оС

0,0028 0,00156

Коэффициент линейного расширения

при 25 – 300оС

Удельное электросопротивление,

0,287 0,42

Температурный коэффициент

электросопротивления

0,0002 0,0012

Предел прочности при

растяжении :

твёрдый 80 -
мягкий 40 39

Относительное удлинение :

мягкий 35 23 – 28
твёрдый 5 4 – 9

Относительное сужение

76 50

Твёрдость НВ, :

мягкий 70 60 – 70
твёрдый 128 100

Температура, оС:

литья 1280–1300 1330–1350
горячей прессовки 980 – 1030 900 – 960
отжига 600 – 780 780 – 810
рекристаллизации 420 450
Травитель

10 – 15% p-p H2SO4

Табл. 1.5. Скорости коррозии мельхиоров МН19 и МНЖМц30–1–1 в различных средах (скорость коррозии указана в мм/год для сред, помеченных * и в мм/сутки для сред, помеченных **)

Среда и температура, оС

Скорость коррозии
МН19 МНЖМц 30–1–1
Атмосфера промышленных районов* - 0,0022 0,002
Атмосфера морская* - 0,001 0,0011
Атмосфера сельская* - 0,00035 0,00035
Пресная вода* - 0,03 0,03
Морская вода* - - 0,03–0,13
Паровой конденсат* - 0,1 0,08

То же, с 30% СО2*

- - 0,3
Водяной пар* - - 0,0025

HNO3, 50%**

- - 6,4
HCl, 2 н.** 25 - 2,3 – 7,6
HCl, 1%** 25 0,3 -
HCl, 10%** 25 0,8 -

H2SO4, 10%**

- 0,1 0,08

H2SO3, нас.**

- 2,6 2,5
HF, 38%** 110 0,9 0,9
HF, 98%** 30 0,05 0,05
HF, безводный** - 0,13 0,008

H3PO4, 8%**

20 0,58 0,5
CH3COOH, 8%** 20 0,028 0,025
Лимонная кислота, 5%** - 0,02 -
Молочная кислота, 5%** - 0,023 -
Винная кислота, 5%** - 0,019 -
Жирные кислоты, 60%** 100 0,066 0,06

NH3, 7%**

30 0,5 0,25
NaOH, 10 – 50%** 100 0,13 0,005

Страницы: 1, 2, 3, 4, 5


на тему рефераты
НОВОСТИ на тему рефераты
на тему рефераты
ВХОД на тему рефераты
Логин:
Пароль:
регистрация
забыли пароль?

на тему рефераты    
на тему рефераты
ТЕГИ на тему рефераты

Рефераты бесплатно, реферат бесплатно, курсовые работы, реферат, доклады, рефераты, рефераты скачать, рефераты на тему, сочинения, курсовые, дипломы, научные работы и многое другое.


Copyright © 2012 г.
При использовании материалов - ссылка на сайт обязательна.