на тему рефераты
 
Главная | Карта сайта
на тему рефераты
РАЗДЕЛЫ

на тему рефераты
ПАРТНЕРЫ

на тему рефераты
АЛФАВИТ
... А Б В Г Д Е Ж З И К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я

на тему рефераты
ПОИСК
Введите фамилию автора:


Реферат: Структура аффинного пространства над телом


Доказательство.  есть множество векторов , где ; таким образом,  есть образ  при биекции , , и поскольку , то .

Установив это, легко убедиться, что  наделено структурой аффинного пространства, ассоциированного с векторным пространством , которое не зависит от точки .

Вместо того, чтобы исходить из векторной структуры , можно использовать отношение эквивалентности, связанное с действием  на : ЛАМ суть классы эквивалентности для этого отношения, и мы приходим к следующему равносильному определению:

Определение 3.2. Пусть - векторное подпространство в  и - отношение эквивалентности, определяемое на с помощью

                             ;

аффинными многообразиями с направлением  называются классы эквивалентности по отношению .

Существуют и другие способы определить ЛАМ пространства , но нам кажется, что данные выше определения ведут к наиболее простому способу изложения дальнейшего.


Случай векторного пространства.

Каждое векторное пространство  канонически снабжено аффинной структурой, так как  действует на себе трансляциями; в этом случае нулевой вектор  называется также ”началом”  и

          .

ЛАМ пространства , проходящие через , суть векторные подпространства в ; ЛАМ, проходящие через точку , суть образы векторных подпространств  при параллельном переносе .

Ради кратности ЛАМ, не проходящие через начало, будут называться собственно аффинными (поскольку они не являются ВПП в ).

 Размерность линейного аффинного многообразия

Вернемся к случаю произвольного аффинного пространства ; предшествующие рассмотрения позволяют определить размерность ЛАМ как размерность его направляющего ВПП. Отсюда появляются понятия: аффинной прямой (ЛАМ размерности 1) и аффинной плоскости (ЛАМ размерности 2). ЛАМ размерности  суть точки .

Аффинной гиперплоскостью называется ЛАМ, направляющее подпространство которого есть векторная гиперплоскость.

Пересечение линейных аффинных многообразий

Предложение 3. 3. Пусть - семейство аффинных подпространств в и  для каждого - направляющее подпространство для .

Если пересечение  непусто, то оно является аффинным подпространством в  с направляющим .

Доказательство сразу получается из определения 3.1. При тех же обозначениях имеет место

Предложение 3.4. Для того, чтобы пересечение  двух ЛАМ в было непустым, необходимо и достаточно, чтобы существовали такие точки  и  , что , и тогда

  .

Доказательство. Если , то для любых ,  имеем   и . Таким образом, .

Обратно, если существуют  и , такие, что , то можно представить  в виде , где , . Тогда точка , определяемая условием  , принадлежит  и, как легко видеть, . Это доказывает, что  принадлежит также , а тем самым  не пусто.

Из предложения 3.4. можно получить примеры ЛАМ с пустым пересечением, а также

Предложение 3.5. Если , - аффинные подпространства в , направляющие которых взаимно дополняют друг друга в , то  и  имеют единственную общую точку.

Параллелизм

Определение 3.3. Говорят, что два линейных аффинных многообразий ,  вполне параллельны, если они имеют одно и то же направляющее подпространство: .

Более общо, говорят, что  параллельно , если направляющие пространства ,   многообразий ,  удовлетворяют включению .

Можно проверить, что отношение ” вполне параллельно (соответственно параллельно)  ” равносильно существованию трансляции  пространства , такой, что  (соответственно ).

Аффинное подпространство, порожденное подмножеством пространства

Предположение 3.6. Если - непустое подмножество в , то существует единственное аффинное подпространство в , обозначаемое , содержащее  и обладающее следующим свойством:

Любое аффинное подпространство , содержащее , содержит и .

Говорят, что  порождено .

Коротким способом доказательства предложения 3.6. является применение предложения 3.3.:  есть пересечение всех ЛАМ, содержащих . Недостаток этого рассуждения в том, что приходится привлекать семейство ”всех ЛАМ, содержащих ”, о котором мало что известно и которое обычно даже несчетно!

Более элементарный и конструктивный способ состоит в выборе в  начальной точки , что сводит задачу к отысканию наименьшего векторного подпространства в A, содержащего  (поскольку ЛАМ, содержащее , являются ВПП в ). Таким образом,  есть ВПП в A, порожденное ; при этом сам характер задачи показывает, что это ВПП не зависит от выбора точки   в . Если мы заметим, что направляющее подпространство для  есть ВПП в , порожденное векторами , то получим также

Предложение 3.7. Пусть - непустое подмножество в ; для каждой точки  положим . Тогда векторное пространство  не зависит от выбора  и  есть ЛАМ, проходящее через  с направлением .

Можно дать прямое доказательство этого утверждения, аналогичное доказательству предложения 3.2.

В частности, если - конечное множество, то векторное пространство  не зависит от  и, следовательно, совпадает с

 и  .

Отсюда вытекает

Предложение 3.8. Размерность аффинного подпространства, порожденного  точками  пространства не превосходит ; его размерность равна  тогда и только тогда, когда  векторов  () образуют свободное семейство.

Другие свойства ЛАМ изучаются в связи с понятием барицентра.

Барицентры: приложения к изучению аффинных подпространств

В последующем всегда обозначает аффинное пространство, ассоциированное с левым векторным пространством  над, вообще говоря, некоммутативным телом . ”Взвешенной точкой” называется элемент  .

Теорема 4.1. Для каждого конечного семейства (системы)   взвешенных точек, такого, что , существует единственная точка , удовлетворяющая любому (а тогда и двум остальным) из следующих трех условий a), b), c):

a) ,

b)  ,

c)  .

Эта точка называется барицентром (центром тяжести) системы . Мы обозначим ее .

Эквивалентность трех условий легко устанавливается с помощью соотношения Шаля.

Свойства. a)  Однородность (слева).

Предложение 4.2. Для любого  имеем

            

b) Ассоциативность.

Предложение 4.3. Пусть - разбиение , т.е. совокупность непустых попарно непересекающихся подмножеств , таких, что  .

Если для любого  скаляр  отличен от нуля и мы положим , то

.

Доказательства получаются непосредственно

Замечания. По определению 4.2. можно всегда привести дело к случаю, когда ”полная масса” системы , т.е.  равна 1. В этом и только в этом случае можно положить

                              .

Для успешного использования этого обозначения следует заметить, что соотношение  равносильно каждому из следующих утверждений:

         и  ,                                      (1)

                  ,                                              (2)

так как (2) влечет за собой (1).

Эквибарицентром конечного подмножества  пространства называется точка . Она существует только тогда, когда характеристика  не является делителем числа .

Следующее утверждение показывает, что отыскание барицентра сводится, за некоторыми исключениями, к последовательному построению барицентров пар точек.

Предложение 4.4. Пусть - конечное семейство взвешенных точек, таких, что  для всех ,  и .

Если характеристика  отлична от 2, то существует разбиение  множества , такое, что

 и .

Доказательство. Если одна из сумм отлична от нуля, то достаточно положить  и .

Если все суммы  равны нулю, то все  равны одному и тому же элементу , такому, что , где .

Если характеристика  отлична от 2, то , и, поскольку  не равно нулю, получим искомое разбиение, выбирая   как двухэлементное подмножество, а  как подмножество из  элементов.

Следствие. Если характеристика  не равна 2, то построение барицентра  точек приводится к последовательному построению  барицентров пар.

Приложения к линейным аффинным многообразиям

Теорема 4.5. Если - непустое подмножество в , то  есть множество барицентров конечных семейств взвешенных точек с носителями в .

Доказательство. Уточним сначала, что под носителем семейства  понимается множество .

Условившись об этом, выберем некоторую точку  в . Барицентры семейства с носителями в  суть точки , удовлетворяющие соотношению вида

,                                                                               (3)

где  и  . При этом соотношение (3) влечет за собой  и поэтому  (см. предложение 3.7). Обратно, если - точка из , то найдутся точки , принадлежащие , и скаляры  ( с суммой, необязательно равной 1), такие, что ; это соотношение также записывается в виде

 с  и ;

таким образом,  есть барицентр системы с носителем в .

Определение 4.1. Подмножество называется аффинно порождающим , если  ; оно называется аффинно свободным, если любая любая точка  из  единственным образом представляется в виде

Страницы: 1, 2, 3, 4, 5, 6


на тему рефераты
НОВОСТИ на тему рефераты
на тему рефераты
ВХОД на тему рефераты
Логин:
Пароль:
регистрация
забыли пароль?

на тему рефераты    
на тему рефераты
ТЕГИ на тему рефераты

Рефераты бесплатно, реферат бесплатно, курсовые работы, реферат, доклады, рефераты, рефераты скачать, рефераты на тему, сочинения, курсовые, дипломы, научные работы и многое другое.


Copyright © 2012 г.
При использовании материалов - ссылка на сайт обязательна.