на тему рефераты
 
Главная | Карта сайта
на тему рефераты
РАЗДЕЛЫ

на тему рефераты
ПАРТНЕРЫ

на тему рефераты
АЛФАВИТ
... А Б В Г Д Е Ж З И К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я

на тему рефераты
ПОИСК
Введите фамилию автора:


Реферат: Распределенные алгоритмы


Через каждый канал пересылается по два сообщения <wakeup> и по два сообщения <tok,r>, откуда сложность сообщений равна 4N-4. В течение D единиц времени после того, как первый процесс начал алгоритм, каждый процесс послал сообщения <wakeup>, следовательно, в течение D+1 единиц времени каждый процесс начал волну. Легко заметить, что первое решение принимается не позднее, чем через D единиц времени после начала волны, а последнее решение принимается не позднее D единиц времени после первого, откуда полное время равно 3D+1. Более тщательный анализ показывает, что алгоритм всегда завершается за 2D единиц времени, но доказательство этого оставлено читателю; см. Упражнение 7.2.

Если порядок сообщений в канале может быть изменен (т.е. канал - не FIFO), процесс может получить сообщение <tok,r> от соседа прежде чем он получил сообщение <wakeup> от этого соседа. В этом случае сообщение <tok,r> может быть временно сохранено или обработано как сообщения <tok,r>, прибывающие позднее.

Количество сообщений может быть уменьшено с помощью двух модификаций. Во-первых, можно устроить так, чтобы не-инициатор не посылал сообщение <wakeup> процессу, от которого он получил первое сообщение <wakeup>. Во-вторых, сообщение <wakeup>, посылаемое листом, может быть объединено с сообщением <tok,r>, посылаемым этим листом. С этими изменениями количество сообщений, требуемое алгоритмом, уменьшается до 3N-4+k, где k - количество нелистовых стартеров [Tel91b, с.139].

Выбор с помощью фазового алгоритма. Фазовый алгоритм можно использовать для выбора, позволив ему вычислять наименьший идентификатор за одну волну, как в Теореме 6.12.

Теорема 7.3  С помощью фазового алгоритма (Алгоритм 6.7) можно провести выбор в произвольных сетях, используя O(D*|E|) сообщений и O(D) единиц времени.

Алгоритм Пелега [Peleg; Pel90] основан на фазовом алгоритме; он использует O(D*|E|) сообщений и O(D) времени, но не требует знания D, т.к. включает в себя вычисление диаметра.

Выбор с помощью алгоритма Финна. Алгоритм Финна (Алгоритм 6.9) не требует, чтобы диаметр сети был известен заранее. Длина O(N*|E|) сообщений, используемых в алгоритме Финна, гораздо больше, чем допускаемая предположениями в этой главе. Следовательно, каждое сообщение в алгоритме Финна должно считаться за O(N) сообщений, откуда сложность сообщений составляет O(N2|E|).

7.2  Кольцевые сети

В этом разделе рассматриваются некоторые алгоритмы выбора для однонаправленных колец. Задача выбора в контексте кольцевых сетей была впервые изложена ЛеЛанном [LeLann; LeL77], который также дал решение со сложностью сообщений O(N2). Это решение было улучшено Чангом (Chang) и Робертсом (Roberts) [CR79], которые привели алгоритм с наихудшей сложностью O(N2), но со средней сложностью только O(N logN). Решения ЛеЛанна и Чанга-Робертса обсуждаются в Подразделе 7.2.1. Вопрос о существовании алгоритма с наихудшей сложностью O(N logN) оставался открытым до 1980 г., когда такой алгоритм был приведен Hirschberg и Sinclair [HS80]. В отличие от более ранних решений, в решении Hirschberg-Sinclair требуется, чтобы каналы были двунаправленными. Предполагалось, что нижняя граница для однонаправленных колец равна W(N2), но Petersen [Pet82] и Dolev, Klawe и Rodeh [DKR82] независимо друг от друга предложили решение, составляющее O(N log N) для однонаправленного кольца. Это решение рассматривается в Подразделе 7.2.2.

Алгоритмы были дополнены соответствующими нижними границами примерно в то же время. Нижняя граница для наихудшего случая для двунаправленных колец, равная » 0.34N logN  сообщений, была доказана Бодлендером [Bodlaender; Bod88]. Pachl, Korach и Rotem [PKR84] доказали нижние границы в W(N logN) для средней сложности, как для двунаправленных так и для однонаправленных колец. Их результаты по нижним границам будут рассмотрены в Подразделе 7.2.3.

7.2.1  Алгоритмы ЛеЛанна и Чанга-Робертса

В алгоритме ЛеЛанна [LeL77] каждый инициатор вычисляет список идентификаторов всех инициаторов, после чего выбирается инициатор с наименьшим идентификатором. Каждый инициатор посылает маркер, содержащий его идентификатор, по кольцу, и этот маркер передается всеми процессами. Предполагается, что каналы подчиняются дисциплине FIFO, и что инициатор должен сгенерировать свой маркер до того, как он получит маркер другого инициатора. (Когда процесс получает маркер, он после этого не инициирует алгоритм.) Когда инициатор p получает свой собственный маркер, маркеры всех инициаторов прошли через p, и p выбирается лишь в том случае, если p - наименьший среди инициаторов; см. Алгоритм 7.2.

var    Listp       : set of P        init  {p} ;

          statep ;

begin  if  p - инициатор  then

              begin  statep := cand ;  send <tok,p>  to Nextp ;  receive <tok,q> ;

                          while  q ¹ p  do

                                    begin   Listp := Listp È {q} ;

                                                send <tok,q>  to Nextp ;  receive <tok,q> ;

                                    end ;

                          if  p = min (Listp)  then statep := leader

                                                    else statep := lost

              end

            else  repeat   receive <tok,q> ;  send <tok,q>  to Nextp ;

                                 if statep = sleep  then  statep := lost

                     until false

end

Алгоритм 7.2 Алгоритм выбора ЛеЛанна.

Теорема 7.4  Алгоритм ЛеЛанна (Алгоритм 7.2) решает задачу выбора для колец, используя O(N2) сообщений и O(N) единиц времени.

Доказательство. Так как порядок маркеров в кольце сохраняется (из предположения о каналах FIFO), и инициатор q отправляет <tok,q> до того как получит <tok,p>, то инициатор p получает <tok,q> прежде, чем вернется <tok,p>. Отсюда следует, что каждый инициатор p заканчивается со списком Listp, совпадающим с множеством всех инициаторов, и единственным выбираемым процессом становится инициатор с наименьшим идентификатором. Всего получается не больше N маркеров и каждый делает N шагов, что приводит к сложности сообщений в O(N2). Не позднее чем через N-1 единицу времени после того, как первый инициатор отправил свой маркер, это сделали все инициаторы. Каждый инициатор получает свой маркер обратно не позднее, чем через N единиц времени с момента генерации этого маркера. Отсюда следует, что алгоритм завершается в течение 2N-1 единиц времени.

Все не-инициаторы приходят в состояние проигравший, но навсегда остаются в ожидании сообщений <tok,r>. Ожидание может быть прервано, если лидер посылает по кольцу специальный маркер, чтобы объявить об окончании выбора.

Алгоритм Чанга-Робертса [CR79] улучшает алгоритм ЛеЛанна, устраняя из кольца маркеры тех процессов, для которых очевидно, что они проиграют выборы. Т.е. инициатор p удаляет из кольца маркер <tok,q>, если q > p. Инициатор p становится проигравшим, когда получает маркер с идентификатором q < p, или лидером, когда он получает маркер с идентификатором p; см. Алгоритм 7.3.

var statep ;

begin  if  p - инициатор  then

              begin  statep := cand ;  send <tok,p>  to Nextp ;

                          repeat receive <tok,q> ;

                                      if  q = p  then  statep := leader

                                                    else if  q < p  then

                                                                begin  if statep = cand  then  statep := lost ;

                                                                            send <tok,q>  to Nextp

                                    end

                          until  statep = leader

              end

            else repeat receive <tok,q> ;  send <tok,q>  to Nextp ;

                               if statep = sleep  then statep := lost

                   until false

end

(* Только лидер завершает выполнение программы. Он передает сообщение всем процессам, чтобы сообщить им идентификатор лидера и завершить их *)

Алгоритм 7.3 Алгоритм выбора Чанга-Робертса.

Теорема 7.5  Алгоритм Чанга-Робертса (Алгоритм 7.3) решает задачу выбора для колец, используя Q(N2) сообщений в наихудшем случае и O(N) единиц времени.

Доказательство. Пусть p0 - инициатор с наименьшим идентификатором. Все процессы являются либо не-инициаторами, либо инициаторами с идентификаторами большими p0, поэтому все процессы передают дальше маркер <tok,p0>, отправленный p0. Следовательно, p0 получает свой маркер обратно и становится выбранным.

Не-инициаторы не могут быть выбраны, т.к. все они приходят в состояние проигравший самое позднее, когда через них передается маркер p0. Инициатор p  с p > p0 не может быть выбран; p0 не передаст дальше маркер <tok,p>, поэтому p никогда не получит свой собственный маркер. Такой инициатор p приходит в состояние проигравший самое позднее, когда через него передается маркер <tok,p0>. Таким образом доказано, что алгоритм решает задачу выбора.

Рис.7.4  Наихудший случай для алгоритма Чанга-Робертса.

Всего используется не более N различных маркеров и каждый маркер делает не более N переходов, что подтверждает границу сложности сообщений O(N2). Чтобы показать, что в самом деле можно использовать W(N2) сообщений, рассмотрим начальную конфигурацию, где все идентификаторы расположены в возрастающем порядке вдоль кольца (см. Рис. 7.4) и каждый процесс является инициатором. Маркер каждого процесса удаляется из кольца процессом 0, таким образом маркер процесса i совершает N-i переходов, откуда следует, что количество пересылок сообщений равно .

Алгоритм Чанга-Робертса не улучшает алгоритм ЛеЛанна в отношении временной сложности или наихудшего случая сложности сообщений. Улучшение касается только среднего случая, где усреднение ведется по всевозможным расположениям идентификаторов вдоль кольца.

Теорема 7.6  Алгоритм Чанга-Робертса в среднем случае, когда все процессы являются инициаторами, требует только O(N logN) пересылок сообщений.

Доказательство. (Это доказательство основано на предложении Friedemann Mattern.)

Предположив, что все процессы являются инициаторами, вычислим среднее количество пересылок маркера по всем круговым расположениям N различных идентификаторов. Рассмотрим фиксированное множество из N идентификаторов, и пусть s будет наименьшим идентификатором. Существует (N-1)! различных круговых расположений идентификаторов; в данном круговом расположении пусть pi - идентификатор, находящийся за i шагов до s; см. Рис. 7.5.

Рис.7.5  Расположение идентификаторов на кольце.

Чтобы вычислить суммарное количество пересылок маркера по всем расположениям, вычислим сначала суммарное количество пересылок маркера <tok,pi> по всем расположениям, а потом просуммируем по i. Маркер <tok,s> при любом расположении передается N раз, следовательно, он пересылается всего N(N-1)! раз. Маркер <tok,pi> передается не более i раз, так как он будет удален из кольца, если достигнет s. Пусть Ai,k - количество циклических расположений, при которых <tok,pi> передается ровно k раз. Тогда суммарное число пересылок <tok,pi> равно .

Маркер <tok,pi> передается ровно i раз, если pi является наименьшим из идентификаторов от p1 до pi, что имеет место в (1/i)*(N-1)! расположениях; итак

Маркер <tok,pi> передается не менее k раз (здесь k £ i), если за процессом pi следует k-1 процесс с идентификаторами, большими pi. Количество расположений, в которых pi - наименьший из k идентификаторов pi-k+1, ..., pi, составляет 1/k часть всех расположений, т.е. (1/k)*(N-1)!. Теперь, для k<i  <tok,pi> передается ровно k раз, если он передается не менее, но и не более k раз, т.е. ³ k раз, но не ³ k+1 раз. В результате количество расположений, где это выполняется, равно , т.е.       ( для k < i ).

Общее количество передач  <tok,pi> во всех расположениях равно:

,

что равняется . Сумма известна как i-е гармоническое число, обозначаемое Hi. В качестве Упражнения 7.3 оставлено доказательство тождества .

Далее мы суммируем по i количество передач маркера, чтобы получить общее количество передач (исключая передачи <tok,s>) во всех расположениях. Оно равно

.

Добавляя N(N-1)! передач маркера для <tok,s>, мы получаем общее количество передач, равное

.

Т.к. это число выведено для (N-1)! различных расположений, среднее по всем расположениям, очевидно, равно N×HN, что составляет »0.69N logN (см. Упр.7.4).

 

7.2.2  Алгоритм Petersen / Dolev-Klawe-Rodeh

Алгоритм Чанга-Робертса достигает сложности сообщений O(N logN) в среднем, но не в наихудшем случае. Алгоритм со сложностью O(N logN) в наихудшем случае был дан Франклином [Franklin; Fra82], но этот алгоритм требует, чтобы каналы были двунаправленными. Petersen [Pet82] и Dolev, Klawe, Rodeh [DKR82] независимо разработали очень похожий алгоритм для однонаправленных колец, решающий задачу с использованием только O(N logN) сообщений в наихудшем случае. Алгоритм требует, чтобы каналы подчинялись дисциплине FIFO.

Сначала алгоритм вычисляет наименьший идентификатор и сообщает его каждому процессу, затем процесс с этим идентификатором становится лидером, а все остальные терпят поражение. Алгоритм легче понять, если представить, что он выполняется идентификаторами, а не процессами. Изначально каждый идентификатор активен, но на каждом круге некоторые идентификаторы становятся пассивными, как будет показано позднее. При обходе круга активный идентификатор сравнивает себя с двумя соседними активными идентификаторами по часовой стрелке и против нее. Если он является локальным минимумом, он остается в круге, иначе он становится пассивным. Т.к. все идентификаторы различны, идентификатор рядом с локальным минимумом сам не является локальным минимумом, откуда следует, что не менее половины идентификаторов выбывают из круга при каждом обходе. Следовательно, после не более чем logN кругов остается только один активный идентификатор, который и является победителем.

Рис.7.6  Процесс p получает текущие идентификаторы q и r.

Этот принцип может быть непосредственно реализован в двунаправленных сетях, как это сделано в алгоритме Франклина [Fra82]. В ориентированных кольцах сообщения можно посылать только по часовой стрелке, что затрудняет получение соседнего активного идентификатора в этом направлении; см. Рис. 7.6. Идентификатор q нужно сравнить с r и p; идентификатор r можно послать q, но идентификатор p нужно было бы передавать против направления каналов. Чтобы сравнить q и с r, и с p, идентификатор q передается (в направлении кольца) процессу, который имеет идентификатор p, а r передается не только процессу с идентификатором q, но и дальше, процессу с идентификатором p. Если q является единственным активным идентификатором в начале обхода круга, первый идентификатор, который q встречает при обходе, равен q (т.е. в этом случае p = q). Когда это происходит, идентификатор q  выигрывает выборы. 

Алгоритм для процессов в однонаправленном кольце обозначен как Алгоритм 7.7. Процесс p является активным в круге, если он в начале круга имеет активный идентификатор cip. Иначе p является пассивным и просто пропускает через себя все получаемые сообщения. Активный процесс посылает свой текущий идентификатор следующему активному процессу, и получает текущий идентификатор предыдущего активного процесса, используя сообщения <one,·>. Полученный идентификатор сохраняется (в переменной acnp), и если он не выбывает из круга, он будет текущим идентификатором p в следующем круге. Чтобы определить, остается ли идентификатор acnp в круге, его сравнивают с cip и активным идентификатором, полученным в сообщении <two,·>. Процесс p посылает сообщение <two,acnp>, чтобы следующий активный процесс мог провести такое же сравнение. Исключение возникает, когда acnp = cip; в этом случае остался один активный идентификатор и об этом сообщается всем процессам в сообщении <smal,acnp>.

var cip          : P      init  p ;       (* Текущий идентификатор p *)

       acnp        : P      init  udef ;   (* Идентификатор соседа против часовой стрелки *)

       winp       : P      init  udef ;   (* Идентификатор победителя *)

       statep      : (active, passive, leader, lost)    init  active ;

begin   if  p - инициатор  then statep := active  else  statep := passive ;

            while  winp = udef  do

                 begin   if  statep = active  then

                                 begin   send <one,cip> ;  receive <one,q> ;  acnp := q ;

                                             if  acnp = cip  then    (* acnp - минимум *)

                                                  begin  send <smal,acnp> ;  winp := acnp ;

                                                             receive <smal,q>

                                                  end

                                             else   (* acnp - текущий идентификатор соседа *)

                                                  begin  send <two,acnp> ;  receive <two,q> ;

                                                             if acnp < cip  and  acnp < q

                                                                then  cip := acnp

                                                                else  statep := passive

                                                  end

                                 end

                            else  (* statep = passive *)

                                 begin  receive <one,q> ;  send <one,q> ;

                                            receive m ;  send m ; 

                                            (* m - либо <two,q>, либо <smal,q> *)

                                            if  m - <smal,q>  then  winp := q

                                 end

                 end ;

            if  p = winp  then  statep := leader  else  statep := lost

end

Алгоритм 7.7 Алгоритм Petersen / Dolev-Klawe-Rodeh.

Теорема 7.7  Алгоритм 7.7 решает задачу выбора для однонаправленных сетей с использованием O(N logN) сообщений.

Доказательство. Будем говорить, что процесс находится на i-м круге, когда он выполняет основной цикл в i-й раз. Обходы круга не синхронизированы глобально; возможно, что в различных частях кольца один процесс на несколько кругов впереди другого. Но, т.к. каждый процесс отправляет и получает в каждом круге ровно по два сообщения и каналы подчиняются дисциплине FIFO, то сообщение всегда будет получено в том же круге, в каком оно было послано. На первом круге все инициаторы активны и все имеют различные «текущие идентификаторы».

Утверждение 7.8  Если круг i начинается с k (k>1) активными процессами, и все процессы имеют различные ci, то в круге остаются не меньше 1 и не больше k/2 процессов. В конце круга снова все текущие идентификаторы активных процессов различны и включают наименьший идентификатор.

Доказательство. Путем обмена сообщениями <one,q>, которые пропускаются пассивными процессами, каждый активный процесс получает текущий идентификатор своего активного соседа против часовой стрелки, который всегда отличается от его собственного идентификатора. Далее, каждый активный процесс продолжает обход круга, передавая сообщения <two,q>, благодаря которым каждый активный процесс получает текущий идентификатор своего второго активного соседа против часовой стрелки. Теперь все активные процессы имеют различные значения acn, откуда следует, что в конце круга все оставшиеся в круге идентификаторы  различны. По крайней мере, остается идентификатор, который был наименьшим в начале круга, т.е. остается хотя бы один процесс. Идентификатор рядом с локальным минимумом не является локальным минимумом, откуда следует, что количество оставшихся в круге не превышает k/2.

Из Утверждения 7.8 следует, что существует круг с номером £ ëlogNû+1, который начинается ровно с одним активным идентификатором, а именно, с наименьшим среди идентификаторов инициаторов.

Утверждение 7.9  Если круг начинается ровно с одним активным процессом p с текущим идентификатором cip, то алгоритм завершается после этого круга с winq = cip для всех q.

Доказательство. Сообщение <one,cip> пропускается всеми процессами и, в конце концов, его получает p. Процесс p обнаруживает, что acnp = cip и посылает по кольцу сообщение <smal,acnp>, вследствие чего все процессы выходят из основного цикла с winp = acnp.

Алгоритм завершается в каждом процессе и все процессы согласовывают идентификатор лидера (в переменной winp); этот процесс находится в состоянии лидер, а остальные - в состоянии проигравший.

Всего происходит не более ëlogNû+1 обходов круга, в каждом из которых передается ровно 2N сообщений, что доказывает, что сложность сообщений ограничена 2N logN + O(N). Теорема 7.7 доказана.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42


на тему рефераты
НОВОСТИ на тему рефераты
на тему рефераты
ВХОД на тему рефераты
Логин:
Пароль:
регистрация
забыли пароль?

на тему рефераты    
на тему рефераты
ТЕГИ на тему рефераты

Рефераты бесплатно, реферат бесплатно, курсовые работы, реферат, доклады, рефераты, рефераты скачать, рефераты на тему, сочинения, курсовые, дипломы, научные работы и многое другое.


Copyright © 2012 г.
При использовании материалов - ссылка на сайт обязательна.