![]() |
|
|
Реферат: Распределенные алгоритмыend ; if p - инициатор and "q Î Neighp : usedp[q] then decide else if $q Î Neighp : (q ¹ fatherp & Øusedp[q]) then begin if fatherp ¹ q0 & Øusedp[q0] then q := q0 else выбор q Î Neighp \ {fatherp} с Øusedp[q] ; usedp[q] := true ; send <tok> to q end else begin usedp[fatherp] := true ; send <tok> to fatherp end end Для каждого процесса при получении <vis> от q0: begin usedp[q0] := true ; send <ack> to q0 end Алгоритм 6.15 Алгоритм поиска в глубину Авербаха. Передачу сообщения <vis> соседу, которому процесс передает маркер, можно опустить. Это усовершенствование (не выполняемое в Алгоритме 6.15) сберегает по два сообщения для каждого ребра дерева и, следовательно, уменьшает сложность сообщений на 2N-2 сообщения. Решение Сайдона. Алгоритм Сайдона [Cidon; Cid88] улучшает временную сложность алгоритма Авербаха, не посылая сообщения <ack>. В модификации Сайдона маркер передается немедленно, т.е. без задержки на 2 единицы времени, внесенной в алгоритм Авербаха ожиданием подтверждения. Этот же алгоритм был предложен Лакшмананом и др. [Lakshmanan; LMT87]. В алгоритме Сайдона может возникнуть следующая ситуация. Процесс p получил маркер и послал сообщение <vis> своему соседу r. Маркер позже попадает в r, но в момент, когда r получает маркер, сообщение <vis> процесса p еще не достигло r. В этом случае r может передать маркер p, фактически посылая его через листовое ребро. (Заметим, что сообщения <ack> в алгоритме Авербаха предотвращают возникновение такой ситуации.) Чтобы обойти эту ситуацию процесс p запоминает (в переменной mrsp), какому соседу он переслал маркер в последний раз. Когда маркер проходит только по ребрам дерева, p получает его в следующий раз от того же соседа mrsp. В ситуации, описанной выше, p получает сообщение <tok> от другого соседа, а именно, от r; в этом случае маркер игнорируется, но p помечает ребро rp, как пройденное, как если бы от r было получено сообщение <vis>. Процесс r получает сообщение <vis> от p после пересылки маркера p, т.е. r получает сообщение <vis> от соседа mrsr. В этом случае r действует так, как если бы он еще не послал маркер p; r выбирает следующего соседа и передает маркер; см. Алгоритм 6.16/6.17. Теорема 6.35 Алгоритм Сайдона (Алгоритм 6.16/6.17) вычисляет DFS-дерево за 2N-2 единиц времени, используя 4|E| сообщений. Доказательство. Маршрут маркера подобен маршруту в Алгоритме 6.14. Прохождение по листовым ребрам либо пропускается (как в Алгоритме 6.15), либо в ответ на маркер через листовое ребро посылается сообщение <vis>. В последнем случае, процесс, получая сообщение <vis>, продолжает передавать маркер, как если бы маркер был возвращен через листовое ребро немедленно. Время между двумя успешными передачами маркера по дереву ограничено одной единицей времени. Если маркер послали по ребру дерева процессу p в момент времени t, то в момент t все сообщения <vis> ранее посещенных соседей q процесса p были посланы, и, следовательно, эти сообщения прибудут не позднее момента времени t+1. Итак, хотя p мог несколько раз послать маркер по листовым ребрам до t+1, не позднее t+1 p восстановился после всех этих ошибок и передал маркер по ребру, принадлежащему дереву. Т.к. должны быть пройдены 2N-2 ребра дерева, алгоритм завершается за 2N-2 единиц времени. Через каждый канал передается не более двух сообщений <vis> и двух <tok>, откуда граница сложности сообщений равна 4|E|. var usedp[q] : boolean init false для всех q Î Neighp ; fatherp : process init udef ; mrsp : process init udef ;
Для инициатора (выполняется один раз): begin fatherp := p ; выбор q Î Neighp ; forall r Î Neighp do send <vis> to r ; usedp[q] := true ; mrsp := q ; send <tok> to q ; end Для каждого процесса при получении <vis> от q0: begin usedp[q0] := true ; if q0 = mrsp then (* интерпретировать, как <tok> *) передать сообщение <tok> как при получении <tok> end Алгоритм 6.16 Алгоритм поиска в глубину Сайдона (Часть 1). Для каждого процесса при получении <tok> от q0: begin if mrsp ¹ udef and mrsp ¹ q0 (* это листовое ребро, интерпретируем как сообщение <vis>*) then usedp[q0] := true else (* действовать, как в предыдущем алгоритме *) begin if fatherp = udef then begin fatherp := q0 ; forall r Î Neighp\ {fatherp} do send <vis> to r ; end ; if p - инициатор and "q Î Neighp : usedp[q] then decide else if $q Î Neighp : (q ¹ fatherp & Øusedp[q]) then begin if fatherp ¹ q0 & Øusedp[q0] then q := q0 else выбор q Î Neighp\ {fatherp} с Øusedp[q] ; usedp[q] := true ; mrsp := q ; send <tok> to q end else begin usedp[fatherp] := true ; send <tok> to fatherp end end end Алгоритм 6.17 Алгоритм поиска в глубину Сайдона (Часть 2). Во многих случаях этот алгоритм будет пересылать меньше сообщений, чем алгоритм Авербаха. Оценка количества сообщений в алгоритме Сайдона предполагает наихудший случай, а именно, когда маркер пересылается через каждое листовое ребро в обоих направлениях. Можно ожидать, что сообщения <vis> помогут избежать многих нежелательных пересылок, тогда через каждый канал будет передано только два или три сообщения. Сайдон замечает, что хотя алгоритм может передать маркер в уже посещенную вершину, он обладает лучшей временной сложностью (и сложностью сообщений), чем Алгоритм 6.15, который предотвращает такие нежелательные передачи. Это означает, что на восстановление после ненужных действий может быть затрачено меньше времени и сообщений, чем на их предотвращение. Сайдон оставляет открытым вопрос о том, существует ли DFS-алгоритм, который достигает сложности сообщений классического алгоритма, т.е. 2|E|, и который затрачивает O(N) единиц времени. 6.4.3 Поиск в глубину со знанием соседей Если процессам известны идентификаторы их соседей, проход листовых ребер можно предотвратить, включив в маркер список посещенных процессов. Процесс p, получая маркер с включенным в него списком L, не передает маркер процессам из L. Переменная usedp[q] не нужна, т.к. если p ранее передал маркер q, то q Î L; см. Алгоритм 6.18. Теорема 6.36 DFS-алгоритм со знанием соседей является алгоритмом обхода и вычисляет дерево поиска в глубину, используя 2N-2 сообщений за 2N-2 единиц времени. У этого алгоритма высокая битовая сложность; если w - количество бит, необходимых для представления одного идентификатора, список L может занять до Nw бит; см. Упражнение 6.14. var fatherp : process init udef ;
Для инициатора (выполняется один раз): begin fatherp := p ; выбор q Î Neighp ; send <tlist, {p}> to q end Для каждого процесса при получении <tlist, L> от q0: begin if fatherp = udef then fatherp := q0 ; if $q Î Neighp \ L then begin выбор q Î Neighp \ L ; send < tlist, LÈ{p} > to q end else if p - инициатор then decide else send < tlist, LÈ{p} > to fatherp end Алгоритм 6.18 Алгоритм поиска в глубину со знанием соседей. 6.5.1 Обзор волновых алгоритмов В Таблице 6.19 дан список волновых алгоритмов, рассмотренных в этой главе. В столбце «Номер» дана нумерация алгоритмов в главе; в столбце «C/D» отмечено, является ли алгоритм централизованным (C) или децентрализованным (D); столбец «T» определяет, является ли алгоритм алгоритмом обхода; в столбце «Сообщения» дана сложность сообщений; в столбце «Время» дана временная сложность. В этих столбцах N - количество процессов, |E| - количество каналов, D - диаметр сети (в переходах).
Замечание: фазовый алгоритм (6.7) и алгоритм Финна (6.9) подходят для ориентированных сетей. Таблица 6.19 Волновые алгоритмы этой главы. Сложность распространения волн в сетях большинства топологий значительно зависит от того, централизованный алгоритм или нет. В Таблице 6.20 приведена сложность сообщений централизованных и децентрализованных волновых алгоритмов для колец, произвольных сетей и деревьев. Таким же образом можно проанализировать зависимость сложности от других параметров, таких как знание соседей или чувство направления (Раздел B.3).
Таблица 6.20 Влияние централизации на сложность сообщений. В Подразделе 6.1.5 было показано, что за одну волну можно вычислить инфимум по входам всех процессов. Вычисление инфимума может быть использовано для вычисления коммутативного, ассоциативного и идемпотентного оператора, обобщенного на входы, такого как минимум, максимум, и др. (см. Заключение 6.14). Большое количество функций не вычислимо таким образом, среди них - сумма по всем входам, т.к. оператор суммирования не идемпотентен. Суммирование входов может быть использовано для подсчета процессов с определенным свойством (путем присваивания входу 1, если процесс обладает свойством, и 0 в противном случае), и результаты этого подраздела могут быть распространены на другие операторы, являющиеся коммутативными и ассоциативными, такие как произведение целых чисел или объединение мультимножеств. Оказывается, не существует общего метода вычисления сумм с использованием волнового алгоритма, но в некоторых случаях вычисление суммы возможно. Например, в случае алгоритма обхода, или когда процессы имеют идентификаторы, или когда алгоритм порождает остовное дерево, которое может быть использовано для вычисления. Невозможность существования общего метода. Невозможно дать общий метод вычисления сумм с использованием произвольного волнового алгоритма, подобного методу, использованному в Теореме 6.12 для вычисления инфимумов. Это может быть показано следующим образом. Существует волновой алгоритм для класса сетей, включающего все неориентированные анонимные (anonymous) сети диаметра два, а именно, фазовый алгоритм (с параметром D=2). Не существует алгоритма, который может вычислить сумму по всем входам, и который является правильным для всех неориентированных анонимных (anonymous) сетей диаметра два. Этот класс сетей включает две сети, изображенные на Рис.6.21. Если предположить, что каждый процесс имеет вход 1, ответ будет 6 для левой сети и 8 - для правой. Воспользовавшись технологией, представленной в Главе 9, можно показать, что любой алгоритм даст для обеих сетей один и тот же результат, следовательно, будет работать неправильно. Детальное доказательство оставлено читателю в Упражнении 9.7. Рис.6.21 Две сети диаметра два и степени три. Вычисление сумм с помощью алгоритма обхода. Если A - алгоритм обхода, сумма по всем входам может быть вычислена следующим образом. Процесс p содержит переменную jp, инициализированную значением входа p. Маркер содержит дополнительное поле s. Всякий раз, когда p передает маркер, p выполняет следующее: s := s + jp ; jp := 0 и затем можно показать, что в любое время для каждого ранее пройденного процесса p jp = 0 и s равно сумме входов всех пройденных процессов. Следовательно, когда алгоритм завершается, s равно сумме по всем входам. Вычисление суммы с использованием остовного дерева. Некоторые волновые алгоритмы предоставляют для каждого события принятия решения dp в процессе p остовное дерево с корнем в p, по которому сообщения передаются по направлению к p. Фактически, каждое вычисление любого волнового алгоритма содержит такие остовные деревья. Однако, может возникнуть ситуация, когда процесс q посылает несколько сообщений и не знает, какие из его исходящих ребер принадлежат к такому дереву. Если процессы знают, какое исходящее ребро является их родителем в таком дереве, дерево можно использовать для вычисления сумм. Каждый процесс посылает своему родителю в дереве сумму всех входов его поддерева. Этот принцип может быть применен для древовидного алгоритма, эхо-алгоритма и фазового алгоритма для клик. Древовидный алгоритм легко может быть изменен так, чтобы включать сумму входов Tpq в сообщение, посылаемое от p к q. Процесс, который принимает решение, вычисляет окончательный результат, складывая величины из двух сообщений, которые встречаются на одном ребре. Фазовый алгоритм изменяется так, чтобы в каждом сообщении от q к p пересылался вход q. Процесс p складывает все полученные величины и свой собственный вход, и результат является правильным ответом, когда p принимает решение. В эхо-алгоритме входы могут суммироваться с использованием остовного дерева T, построенного явным образом во время вычисления; см. Упражнение 6.15. Вычисление суммы с использованием идентификации. Предположим, что каждый процесс имеет уникальный идентификатор. Сумма по всем входам может быть вычислена следующим образом. Каждый процесс помечает свой вход идентификатором, формируя пару (p, jp); заметим, что никакие два процесса не формируют одинаковые пары. Алгоритм гарантирует, что, когда процесс принимает решение, он знает каждый отдельный вход; S = {(p, jp): p Î P} - объединение по всем p множеств Sp = {(p, jp)}, которое может быть вычислено за одну волну. Требуемый результат вычисляется с помощью локальных операций на этом множестве. Это решение требует доступности уникальных идентификаторов для каждого процесса, что значительно увеличивает битовую сложность. Каждое сообщение волнового алгоритма включает в себя подмножество S, которое занимает N*w бит, если для представления идентификатора и входа требуется w бит; см. Упражнение 6.16. 6.5.3 Альтернативные определения временной сложности Временную сложность распределенного алгоритма можно определить несколькими способами. В этой книге при рассмотрении временной сложности всегда имеется в виду Определение 6.31, но здесь обсуждаются другие возможные определения. Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42 |
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() |
|
Рефераты бесплатно, реферат бесплатно, курсовые работы, реферат, доклады, рефераты, рефераты скачать, рефераты на тему, сочинения, курсовые, дипломы, научные работы и многое другое. |
||
При использовании материалов - ссылка на сайт обязательна. |