на тему рефераты
 
Главная | Карта сайта
на тему рефераты
РАЗДЕЛЫ

на тему рефераты
ПАРТНЕРЫ

на тему рефераты
АЛФАВИТ
... А Б В Г Д Е Ж З И К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я

на тему рефераты
ПОИСК
Введите фамилию автора:


Реферат: Морфологический анализ цветных (спектрозональных) изображений


,                                                       (20)

и равен

                                                            (21)

Задача (18) тем самым сведена к задаче

.                                    (22)

            В связи с последней рассмотрим самосопряженный неотрицательно определенный оператор 

 .                                                          (23)

            Максимум (неотрицательной) квадратичной формы  на сфере в Rn, как известно, (см.,например, [11]) достигается на собственном векторе yi оператора Фi, отвечающем максимальному собственному значению >0,

,

и равен , т.е. . Следовательно, максимум в (22) равен  и достигается, например, при

            Теорема 3. Пусть A1,...,AN -заданное измеримое разбиение X, причем[9] m(Ai)>0, i=1,...,N. Решением задачи (18) наилучшего приближения изображения  изображениями g(×) (17) является изображение

                          (24)

            Операторы  ,i=1,...,N, и  - нелинейные (зависящие от f(×)) проекторы: Пi проецирует в Rn векторы  на линейное подпространство , натянутое на собственный вектор  оператора Ф(23), отвечающий наибольшему собственному значению ri,

;                                                (25)

П проецирует в  изображение  на минимальное линейное подпространство , содержащее все изображения

Невязка наилучшего приближения

                          (19*).

            Доказательство. Равентство (24) и выражение для Пi следует из (17),(20) и решения задачи на собственные значения для оператора Фi (23). Поскольку Фi самосопряженный неотрицательно определенный оператор, то задача на собственные значения (23) разрешима, все собственные значения Фi  неотрицательны и среди них ri - наибольшее.

            Для доказательства свойств операторов Пi, i=1,...,N, и П введем обозначения, указывающие на зависимость от f(×):

                                                          (26*)

Эти равенства, показывающие, что результат двукратного действия операторов Пi, i=1,...,N, и П (26) не отличается от результатата однократного их действия, позволят считать операторы (26) проекторами.

            Пусть fi - cсобственный вектор Фi , отвечающий максимальному собственному значению ri. Чтобы определить  следует решить задачу на собственные значения для оператора :

.

Поскольку rank=1,  имеет единственное положительное собственное значение, которое, как нетрудно проверить, равно ri, и ему соответствует единственный собственный вектор fi. Поэтому

.

Отсюда, в свою очередь, следует равенство (26*) для                               n

            Лемма 4. Для любого изображения  решение (24) задачи (18) наилучшего приближения единственно и является элементом .

            Доказательство. Достаточно доказать, что единственный (с точностью до положительного множителя) собственный вектор fi оператора (23), отвечающий максимальному собственному значению ri, можно выбрать так, чтобы , поскольку в таком случае будут выполнены импликации:

,

составляющие содержание леммы. Действительно, если  то согласно (23) , поскольку включение  означает, что; отсюда и из (25) получим, что ,i=1,...,N, а поэтому и в (24) .

            Убедимся в неотрицательности . В ортонормированном базисе e1,...,en, в котором , выходной сигнал i-го детектора в точке  (см. замечание 1) задача на собственные значения (23*) имеет вид , p=1,...,n,

где , .

            Так как матрица  симметрическая и неотрицательно определенная () она имеет n неотрицательных собственных значений, которым соответствуют n ортонормированных собственных векторов , а поскольку матричные элементы , то согласно теореме Фробенуса-Перрона максимальное собственное значение  - алгебраически простое (некратное), а соответствующий собственный вектор можно выбирать неотрицательным:

. Следовательно, вектор fi определен с точностью до положительного множителя , .         n

            Замечание 4.

Если  , т.е. если аппроксимируемое изображение на множествах того же разбиения имеет постоянный цвет, то в теореме 3 , .

            Наоборот, если , то

 , т.е.  определяется выражением (17), в котором  .

Итак, пусть в изображении g(×) (17) все векторы f1,.…..,fN попарно не коллинеарны, тюею цвета всех подмножеств A1,...,AN попарно различны. Тогда форма в широком смысле  изображения (17) есть множество решений уравнения

,,                                                       (27)

где , fi - собственный вектор оператора Фi, отвечающий максимальному собственному значению ri, i=1,...,N . В данном случае , если и только если выполнено равенство (27).

            Оператор П (24), дающий решение задачи наилучшего приближения  , естественно отождествить с формой в широком смысле изображения  (17).

            Заданы векторы цвета j1,..., jq, требуется определить разбиение A1,..., Aq, на множествах которого наилучшее приближение имеет соответственно цвета  j1,..., jq и оптимальные распределения яркостей [10].

            Речь идет о следующей задаче наилучшего в  приближения изображения

.           (28)

            Рассмотрим вначале задачу (28) не требуя, чтобы . Так как для любого измеримого

,              (29)

и достигается на

,                                               (30)

то, как нетрудно убедиться,

,                (31)

где звездочка * означает то же самое, что и в равенстве (14): точки xÎX, в которых выполняется равенство  могут быть произвольно отнесены к одному из множеств Ai или Aj.

            Пусть  - разбиение , в котором

                        (32)

а F: Rn-> Rn оператор, определенный условием

                         (33)

Тогда решение задачи (28) можно представить в виде

,                                        (34)

где  - индикаторная функция множества Ai (31), i=1,...,q и F -оператор, действующий в  по формуле (34) (см. сноску 4 на стр. 13).

            Нетрудно убедиться, что задача на минимум (29) с условием физичности

              (35)

имеет решение

                (36)

            Соответственно решение задачи (28) с условием физичности имеет вид

,                                   (37)

где  - индикаторная функция множества

,                (38)

            В ряде случаев для построения (34) полезно определить оператор F+: Rn-> Rn, действующий согласно формуле

                    (39)

где

, так что ,i=1,...q.  (40)

            Подытожим сказанное.

            Теорема 4. Решение задачи (28) наилучшего в приближения изображения  изображениями на искомых множествах A1,...,Aq разбиения X заданные цветами j1,..., jq соответственно, дается равенством (34), искомое разбиение A1,...,Aq определено в (31). Требование физичности наилучшего приближения приводит к решению (37) и определяет искомое разбиение формулами (38). Решение (34) инвариантно относительно любого, а (37) - относительно любого, сохраняющего физичность, преобразования, неизменяющего его цвет.

            Формой в широком смысле изображения, имеющего заданный набор цветов  j1,..., jq на некоторых множествах положительной меры A1,...,Aq разбиение поля зрения можно назвать оператор  (34), формой такого изображения является оператор F+ (37). Всякое такое изображение g(×), удовлетворяющее условиям физичности (неотрицательности яркостей), удовлетворяет уравнению F+g(×)=g(×), те из них, у которых m(Ai)>0, i=1,...,q, изоморфны, остальные имеют более простую форму.                                    n

            В заключение этого раздела вернемся к понятию формы изображения, заданного с точностью до произвольного, удовлетворяющего условиям физичности, преобразования яркости. Речь идет о форме изображения , заданного распределением цвета , при произвольном (физичном) распределении яркости, например, . Для определения формы  рассмотрим задачу наилучшего в  приближения изображения  такими изображениями

,                         (41)

            Теорема 5. Решение  задачи (41) дается равенством

,               (42)

в котором , где  . Невязка приближения

,                      (43)

(   !)                                                       n

            Определение. Формой изображения, заданного распределением цвета , назовем выпуклый, замкнутый конус изображений

или - проектор  на .

            Всякое изображение g(×),  распределение цвета которого есть j(×) и только такое изображение содержится в  и является неподвижной точкой оператора

: g(×) = g(×).                                                                                 (#)

            Поскольку на самом деле детали сцены, передаваемые распределением цвета j(×), не представлены на изображении f(×) = f(×)j(×) в той области поля зрения, в которой яркость f(x)=0, xÎX, будем считать, что  - форма любого изображения f(x) = f(x)j(x),  f(x)>0, xÎX(modm), все такие изображения изоморфны, а форма всякого изображения g(×), удовлетворяющего уравнению (#), не сложнее, чем форма f(×).

            Замечание 5. Пусть j1,..., jN - исходный набор цветов, , A1,...,AN - соответствующее оптимальное разбиение X, найденное в теореие 4 и

,                                              (34*)

- наилучшее приближение f(×). Тогда в равенстве (24)

,                                                                     (24*)

если A1,...,AN - исходное разбиение X в теореме 3. Наоборот, если A1,...,AN - заданное в теореме 3 разбиение X и f1,...,fN - собственные векторы операторов Ф1,...,ФN (23) соответственно, отвечающие максимальным собственным значениям, то f1,...,fN  и будет выполнено равенство (24), если в (34*) определить ji как цвет fi в (24), i=1,...,N.

            Проверка этого замечания не представляет затруднений.

В. Случай, когда допускаются небольшие изменения цвета в пределах каждого Ai, i=1,...,N.

            Разумеется, условие постоянства цвета на множествах Ai, i=1,...,N, на практике может выполняться лишь с определенной точностью. Последнюю можно повысить как путем перехода к более мелкому разбиению , так и допустив некоторые изменения цвета в пределах каждого Ai, i=1,...,N, например, выбрав вместо (17) класс изображений

                                                        (17*)

в котором  в (3).

            Поскольку в задаче наилучшего приближения f(×) изображениями этого класса предстоит найти  , векторы  при любом i=1,...,N, можно считать ортогональными, определив

,                   (*)

из условия минимума невязки по . После этого для каждого i=1,...,N  векторы  должны быть определены из условия

                        (**)

при дополнительном условии ортогональности

. Решение этой задачи дается в следующей лемме

            Лемма 5. Пусть  ортогональные собственные векторы оператора Ф(23), упорядоченные по убыванию собственных значений:

.

Тогда решение задачи (**) дается равенствами .

            Доказательство. Заметим, что, поскольку Фi - самосопряженный неотрицательно определенный оператор, его собственные значения неотрицательны, а его собственные векторы всегда можно выбрать так, чтобы они образовали ортогональный базис в Rn. Пусть Pi - ортогонально проецирует в Rn на линейную оболочку  собственных векторов  и

[Pi Фi Pi] - сужение оператора Pi Фi Pi на . Тогда левая часть (*) равна следу оператора [Pi Фi Pi]

, где  - j-ое собственное значение оператора  (см., например, [10]). Пусть . Тогда согласно теореме Пуанкаре, [10], , откуда следует утверждаемое в лемме.    ■

            Воспользовавшись выражениями (*) и леммой 5, найдем, что в рассматриваемом  случае  имеет  место утверждение, аналогичное теореме 3.

            Теорема 3*. Наилучшее приближение любого изображения f(×) изображениями (17*) имеет вид

Страницы: 1, 2, 3, 4, 5


на тему рефераты
НОВОСТИ на тему рефераты
на тему рефераты
ВХОД на тему рефераты
Логин:
Пароль:
регистрация
забыли пароль?

на тему рефераты    
на тему рефераты
ТЕГИ на тему рефераты

Рефераты бесплатно, реферат бесплатно, курсовые работы, реферат, доклады, рефераты, рефераты скачать, рефераты на тему, сочинения, курсовые, дипломы, научные работы и многое другое.


Copyright © 2012 г.
При использовании материалов - ссылка на сайт обязательна.