![]() |
|
|
Реферат: Лекции по гидравликеВ данном случае действующим напором является разность уровней свободных поверхностей жидкости z. Скорость истечения будет равна: j *
* Обозначив:
7.3. Истечение жидкости через насадки. Насадками называются короткие трубки, монтируемые, как правило, с
внешней стороны резервуара таким образом, чтобы внутренний канал насадка полностью
соответствовал размеру отверстия в тонкой стенке. Наличие такой направляющей
трубки приве отрыве струи от острой кромки отверстия струя попадает в канал насадка, а поскольку струя испытывает сжатие, то стенок насадка она касается на расстоянии от 1,0 до 1,5 его диаметра. Воздух, который первоначально находится в передней части насадка, вследствие неполного заполнения его жидкостью постепенно выносится вместе с потоком жидкости. Таким образом, в этой области образуется «мёртвая зона», давление в которой ниже, чем давление в окружающей среде (при истечении в атмосферу в «мёртвой зоне» образуется вакуум). За счёт этих факторов увеличивается перепад давления между резервуаром и областью за внешней его стенкой и в насадке генерируется так называемый эффект подсасывания жидкости из резервуара. Однако наличие самого насадка увеличивает гидравлическое сопротивление для струи жидкости, т.к. в самом насадке появляются потери напора по длине трубки. Если трубка имеет ограниченную длину, то влияние подсасывающего эффекта с лихвой компенсирует дополнительные потери напора по длине. Практически эти эффекты (подсасывание и дополнительные сопротивления по длине) компенсируются при соотношении: / = 55 d. По этой причине длина насадков ограничивается / = (3 -5)d . По месту расположения насадки принято делить на внешние и внутренние насадки. Когда насадок монтируется с внешней стороны резервуара (внешний насадок), то он оказывается более технологичным, что придаёт ему преимущество перед внутренними насадками. По форме исполнения насадки подразделяются на цилиндрические и конические, а по форме входа в насадок выделяют ещё коноидальные насадки, вход жидкости в которые выполнен по форме струи. Внешний цилиндрический насадок. При истечении жидкости из цилиндрического насадка сечение
выходящей струи и сечение отверстия одинаковы, а это значит, что коэффициент
сжатия струи Приняв Для вычисления степени вакуума в «мёртвой зоне» запишем уравнение Бернулли для двух сечений относительно плоскости сравнения проходящей через ось насадка: А - А и С - С (ввиду малости поперечного размера насадка сечение С - С будем считать «горизонтальным»,^ плоским): Величину избыточному давлению. Приняв, а0 =ас =1 получим: Учитывая, что для цилиндрического насадка Для затопленного цилиндрического насадка все приведенные выше рассуждения остаются в силе, только за величину действующего напора принимается разность уровней свободных поверхностей жидкости между питающим резервуаром и приёмным резервуаром. Если цилиндрический насадок расположен под некоторым углом к стенке резервуара (под углом к вертикальной стенке резервуара или горизонтальный
насадок к наклонной стенке резервуара), то коэффициент скорости и расхода можно
вычис где: Значения коэффициента расхода можно взять из следующей таблицы: Сходящиеся насадки. Если придать насадку форму конуса, сходящемуся по направлению к его выходному отверстию, то такой насадок будет относиться к группе сходящихся конических насадков. Такие насадки характеризуются углом конусности а. От величины этого угла зависят все характеристики насадков. Как коэффициент скорости, так и коэффициент расхода увеличиваются с увеличением угла конусности, при угле » эффициента расхода превышающее 0,94. При дальнейшем увеличении угла конусности насадок начинает работать как отверстие в тонкой стенке, при этом коэффициент скорости продолжает увеличиваться, а коэффициент расхода начинает убывать. Это объясняется тем, что уменьшаются потери на расширение струи после её сжатия. Область применения сходящихся насадков связана с теми случаями, когда необходимостью иметь большую выходную скорость струи жидкости при значительном напоре (сопла турбин, гидромониторы, брандспойты). - .-. . • Расходящиеся насадки. Вакуум в сжатом сечении расходящихся насадков больше, чем у цилиндрических насадков и увеличивается с возрастанием угла конусности, что увеличивает расход жидкости. Но с увеличением угла конусности расходящихся насадков возрастает опасность отрыва струи от стенок насадков. Необходимо отметить, что потери энергии в расходящемся насадке больше, чем в насадках других типов. Область применения расходящихся насадков охватывает те случаи, где требуется большая пропускная способность при малых выходных скоростях жидкости (водоструйные насосы, эжекторы, гидроэлеваторы и др.) Коноидальные насадки. В коноидальных насадках вход в насадки выполнен по профилю
входящей струи. Это обеспечивает уменьшение истечения через малое отверстие тем, что величина напора будет
различной для различных площадок в сечении отверстия. Максимальным напором
будет напор в площадках примыкающих к нижней кромке отверстия. В связи с этим и
скорости в различных элементарных струйках проходящих Выделим в площади сечения отверстия малый элемент его сечения высотой dH, расположенный на глубине Н под уровнем свободной поверхности жидкости. Тогда расход жидкости через этот элемент сечения отверстия будет равен: где Н - глубина погружения центра тяжести элемента
площади сечения отверстия Данное выражение будет справедливым, если величиной скоростного напора на свободной поверхности жидкости можно пренебречь. 7.5. Неустановившееся истечение жидкости из резервуаров. Истечение из резервуара произвольной формы с постоянным притоком. Резервуары являются наиболее распространёнными хранилищами различных жидкостей. К наиболее существенным технологическим операциям с резервуарами относятся операции заполнения резервуаров и операции опорожнения. Если операция заполнения никаких существенных проблем перед гидравликой не ставит, то опорожнение резервуара может рассматриваться как прямая гидравлическая задача. Пусть, в самом общем случае, имеем резервуар произвольной формы (площадь горизонтального сечения резервуара является некоторой функцией его высоты). В резервуар поступает жидкость с постоянным расходом Q0. Задача сводится к нахождению времени необходимого для того, чтобы уровень жидкости в резервуаре
изменился с высоты взлива Величина расхода при истечении жидкости является переменной и
зависит от напора, т.е. текущей высоты взлива жидкости в резервуаре
За бесконечно малый интервал времени из резервуара вытечет объём жидкости равный: За этот же интервал времени в резервуар поступит объём жидкости равный: Тогда объём жидкости в резервуаре изменится на величину Выразив величину притока жидкости в резервуар Qo подобно расходу Q, получим: Тогда время, за которое уровень жидкости изменится на величину dH : Для дальнейшего решения резервуар следует разбить на бесконечно тонкие слои, для которых можно считать, что площадь сечения резервуара в пределах слоя постоянна. Тем не менее, практического значения задача (в общем виде) не имеет. Чаще всего требуется искать время полного опорожнения резервуара правильной геометрической формы: вертикальный цилиндрический резервуар (призматический), горизонтальный цилиндрический, сферический. Истечение жидкости из вертикального цилиндрического резервуара. Вертикальный цилиндрический резервуар
площадью поперечного сечения S заполнен
жидкостью до уровня Н. Приток жидкости в резервуар отсутствует. Тогда
дифференциальное уравнение истечения жидкости будет i Для начала определим время необходимое для перемещения уровня
жидкости с отметки Когда Таким образом, время полного опорожнения резервуара в два раза больше, чем время истечения этого же объёма жидкости при постоянном напоре равном максимальному напору Я. Истечение жидкости из горизонтального цилиндрического резервуара. В отличие от вертикального резервуара, площадь сечения свободной поверхности и горизонтального сечения резервуара - величина переменная и зависит от уровня жидкости в резервуаре. Время полного опорожнения резервуара: или, обозначив: D = 2 Переток жидкости между резервуарами при переменных уровнях жидкости. Если два резервуара соединены между собой, то при разных уровнях жидкости в этих резервуарах будет происходить переток жидкости из резервуара с более высоким положением уровня свободной поверхности в резервуар, где эта поверхность будет расположена на более низкой отметке. Переток будет осуществляться при переменном (убывающем) расходе и продолжаться до тех пор, пока уровни жидкости в обоих резервуарах не сравняются. Рассмотрим два резервуара А и В, соединённые между собой трубопроводом с площадью сечения s. Питающий резервуар А имеет более высокий уровень жидкости С - С' относительно
плоскости сравнения О - О, который равен обеспечивается переменным действующим напором равным Н = этих уровня меняются во времени,, то и действующий напор Я тоже будет переменным. Пусть начальный действующий напор будет равен пор на конец интересующего нас периода будет равным
где: При этом в резервуаре А уровень жидкости понизится на
величину Изменения уровней жидкости в резервуарах будут связаны между собой:
Тогда:
откуда: Поскольку площадь сечения резервуара постоянная, то необходимо
лишь выразить
Окончательно:
В том случае, когда уровни в резервуарах сравняются 8. Движение жидкостей в трубопроводах 8.1. Классификация трубопроводов Роль трубопроводных систем в хозяйстве любой страны, отдельной корпорации или просто отдельного хозяйства трудно переоценить. Системы трубопроводов в настоящее время являются самым эффективным, надёжным и экологически чистым транспортом для жидких и газообразных продуктов. Со временем их роль в развитии научно-технического прогресса возрастает. Только с помощью трубопроводов достигается возможность объединения стран производителей углеводородного сырья со странами потребителями. Большая доля в перекачке жидкостей и газов по праву принадлежит системам газопроводов и нефтепроводов, но значительную роль играют такие системы как водоснабжение и канализация, теплоснабжение и вентиляция, добыча некоторых твёрдых ископаемых и их гидротранспорт. Практически в каждой машине и механизме значительная роль принадлежит трубопроводам. По своему назначению трубопроводы принято различать по виду транспортируемой по ним продукции: газопроводы, - нефтепроводы, - водопроводы, воздухопроводы, - продуктопроводы. По виду движения по ним жидкостей трубопроводы можно разделить на две категории: напорные трубопроводы, безнапорные (самотёчные) трубопроводы. Также трубопроводы можно подразделить по виду сечения: на трубопроводы круглого и не круглого сечения (прямоугольные, квадратные и другого профиля). Трубопроводы можно разделить и по материалу, из которого они изготовлены: стальные трубопроводы, бетонные, пластиковые и др. Дать полную и исчерпывающую классификацию трубопроводов вряд ли удастся из-за многообразия их функций и областей использования. Нас будут интересовать лишь те классификации, которые влияют на принятые методы и способы описания движения по ним жидкостей и газов. 8.2. Простой трубопровод Основным элементом любой трубопроводной системы, какой бы сложной она ни была, является простой трубопровод. Классическим определением его будет- простым трубопроводом является трубопровод, собранный из труб одинакового диаметра и качества его внутренних стенок, в котором движется транзитный поток жидкости, и на котором нет местных гидравлических сопротивлений. При напорном движении жидкости простой трубопровод работает полным сечением
где:
Полагая, что весь имеющийся напор на головных сооружениях (в
начале) трубопровода тратится на преодоление сил трения в трубопроводе (в
простом трубопроводе это потери напора по длине Расход жидкости в трубопроводе: Обозначив: где: К - модуль расхода - расход жидкости в русле заданного сечения при гидравлическом уклоне равном единице (иначе модуль расхода называют расходной характеристикой трубопровода). Другой и более известный вид основного уравнения простого трубопровода получим, решив уравнение относительно напора: Величину График уравнения простого трубопровода Если на трубопроводе собранном из труб одинакового диаметра
имеются местные сопротивления, то такой трубопровод можно привести к простому
трубопроводу эквивалентной длины 8.3. Сложные трубопроводы К сложным трубопроводам следует относить те трубопроводы, которые не подходят к категории простых трубопроводов, т.е к сложным трубопроводам следует отнести: трубопроводы, собранные из труб разного диаметра (последовательное соединение трубопроводов), трубопроводы, имеющие разветвления: параллельное соединение трубопроводов, сети трубопроводов, трубопроводы с непрерывной раздачей жидкости. Последовательное соединение трубопроводов. При последовательном соединении трубопроводов конец предыдущего простого трубопровода одновременно
является началом следующего простого трубопровода. В сложном трубопроводе,
состоящем из последовательно соединённых простых Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 |
|
|||||||||||||||||||||||||||||
![]() |
|
Рефераты бесплатно, реферат бесплатно, курсовые работы, реферат, доклады, рефераты, рефераты скачать, рефераты на тему, сочинения, курсовые, дипломы, научные работы и многое другое. |
||
При использовании материалов - ссылка на сайт обязательна. |