![]() |
|
|
Реферат: Лекции по гидравликемасса жидкости, вытекшая через правую грань элемента за малый интервал времени dt: Изменение массы жидкости внутри элемента при движении жидкости вдоль оси ОХ: Аналогично, изменение массы жидкости внутри элемента при движении жидкости вдоль оси OY: 1, и вдоль оси OZ: Окончательно, изменение массы жидкости внутри элемента при движении жидкости в произвольном направлении:
Величина плотности жидкости в начальный момент (до начала движения
жидкости t = Q) - р,
а по истечении бесконечно малого интервала времени (т.е. Масса жидкости в объёме выделенного элемента в начальный момент времени: для времени Изменение массы жидкости за бесконечно малый интервал времени dt:
откуда для наиболее общего случая нестационарного поля уравнение неразрывности запишется в следующем виде: и для частного случая - стационарного поля
В векторной форме уравнения неразрывности жидкости запишутся в следующем виде:
3.4 Уравнение неразрывности для элементарной струйки жидкости Выделим в элементарной струйке жидкости двумя сечениями 1 - Г и 2
- 2' малый отсек жидкости длиной dl.
Объём жидкости внутри
выделенного отсека
Масса жидкости, вытекшая за это же время через противоположное сечение отсека: 1 В данном разделе для удобства записи вместо принятых ранее обозначений площади сечения элементарной струйки жидкости dS и элементарного расхода жидкости dQ используются обозначения: S и Q. За тот же интервал времени масса жидкости внутри отсека изменится на величину: ^ * откуда
Окончательно формула может быть представлена в виде При установившемся движении жидкости (р = const) уравнение неразрывности примет вид: 3.5 Элементы кинематики вихревого движения жидкости Поступательному движению жидкости часто сопутствует вихревое движение, вызванное вращением элементарного объёма жидкости вокруг некоторой оси Такое вращение жидкости называется вихрем; угловая скорость этого элементарного объёма является основной характеристикой вихря Касательная в любой точке вектора вихря - вихревая линия Поверхность образованная вихревыми линиями, проведенными через точки замкнутого контура, называется вихревой трубкой Прямолинейную вихревую трубку с бесконечно малой площадью сечения можно рассматривать как вращающийся твердый цилиндр, окружная скорость которого пропорциональна радиусу. Кинематической характеристикой вихревого течения жидкости является циркуляция скорости, которая служит мерой завихренности. '
где: Г - циркуляция вектора скорости, - проекция вектора скорости на касательную к этому контуру в i-той точ- ке
В тех случаях, когда вращение жидкости в определённых точках пространства происходит с постоянной скоростью и положение вихря с течением времени не меняется, то такое вихревое движение принято называть стационарным вихрем В иных случаях вихревое движение следует считать не стационарным. 3.6. Поток жидкости Поток жидкости представляет собой совокупность элементарных струек жидкости. По этой причине основные кинематические характеристики потока во многом совпадают по своему смыслу с аналогичными характеристиками для элементарной струйки жидкости. Тем не менее, различия всё же имеются. Так в отличие от элементарной струйки, которая отделена от остальной жидкости поверхностью трубки тока, образованной линиями тока, поток жидкости имеет реальные границы в виде твёрдой среды, газообразной или жидкой сред. По типу границ потоки можно разделить на следующие виды: напорные, когда поток ограничен твёрдой средой по всему периметру сечения, безнапорные, когда часть сечения потока представляет собой свободную поверхность жидкости, гидравлические струи, когда поток ограничен только жидкой или газообразной средой. Если гидравлическая струя ограничена со всех сторон жидкостью, то она называется затопленной гидравлической струёй, если гидравлическая струя ограничена со всех сторон газовой средой, то такая струя называется незатопленной. Поперечное сечение потока, расположенное нормально к линиям тока, называется живым сечением потока. Площадь живого сечения потока определяется соотношением: Расход жидкости в потоке определяется как отношение объёма жидкости протекающее через живое сечение потока к интервалу времени или определяется следующим соотношением: Кроме известной размерности расхода в системе СИ м3/с имеется целый набор внесистемных единиц для измерения расхода жидкости в потоке: м3/сут, л/чс, л/с, и др. Средней скоростью в живом сечении потока называется величина: Смоченным периметром живого сечения потока П называется
часть контура живого сечения потока, которая ограничена твёрдой средой. (На
рисунке смоченный пери Отношение площади живого сечения потока к длине смоченного периметра называется гидравлическим радиусом живого сечения. Величина гидравлического радиуса круглого сечения радиуса г: равна половине величины его геометрического радиуса. Величина гидравлического радиуса трубы квадратного сечения со стороной а, (полностью заполненной жидкостью) равна 4. Динамика идеальной жидкости 4.1. Дифференциальное уравнение движения идеальной жидкости (при установившемся движении) и его интегрирование Для вывода уравнения движения жидкости обратимся к записанному
ранее уравнению равновесия жидкости (в проекциях на координатные оси), иначе
говоря: Тогда уравнение движения жидкости в проекциях на координатные оси можно записать в следующем виде: Согласно основному положению о поле скоростей (метод Эйлера) для проекций скоростей движения жидкости можно записать следующее: или (для установившегося движения жидкости): Найдём первые производные от скоростей по времени, т.е. определим ускорения вдоль осей координат: отметим, что: ' * / Теперь подставив выражения для ускорений в исходную систему дифференциальных уравнений движения жидкости, получим систему уравнений Эйлера в окончательном ви-де2: Теперь вновь обратимся к системе дифференциальных уравнений движения жидкости, умножив обе части 1-го уравнения на dx, 2-го уравнения на dy, 3-го уравнения на dz, получим: и просуммировав эти уравнения по частям, получим: 2 При неустановившемся движении жидкости уравнения Эйлера дополняются первыми слагаемыми. Преобразуем левую часть полученного уравнения, полагая, что
Слагаемые в правой части уравнения являются полными дифференциалами функций. Теперь уравнение примет вид Если из массовых сил на жидкость действует только сила тяжести, то > ,* тогда получим: После интегрирования получим:
разделив почленно все члены уравнения на g, получим так называемое уравнение Бернулли Здесь величина Н называется гидродинамическим напором Величина гидродинамического напора постоянна для всех живых сечений элементарной струйки идеальной жидкости. 4.2. Уравнение Бернулли для элементарной струйки идеальной жидкости Выделим двумя нормальными к линиям тока сечениями 1 - 1 и 2 - 2
отсек жидкости, который будет находиться под действием сил давления рон имеют противоположные друг другу направления. Перемещение всего отсека жидкости можно заменить перемещением массы жидкости между сечениями: 1-1иГ-Г в положение 2-2и2'-2', при этом центральная часть отсека жидкости (можно утверждать) своего первоначального положения не меняет и в движении жидкости участия не принимает. Тогда работа сил давления по перемещению жидкости Работа сил тяжести будет равна работе по перемещению веса отсека
жидкости на разницу уровней При перемещении отсека жидкости кинетическая энергия изменится на величину:
Теперь запишем общее уравнение баланса энергии: Разделив все элементы уравнения на dG и, переместив в левую часть уравнения величины с индексами «1» а в правую - с индексом «2», получим: Это последнее уравнения носит название уравнения Бернулли для элементарной струйки идеальной жидкости. 4.3. Интерпретация уравнения Бернулли Все члены уравнения Бернулли имеют линейную размерность и представляют собой напоры: z - называется геометрическим напором (геометрической высотой), представляет собой место положения центра тяжести живого сечения элементарной струйки относительно плоскости сравнения,
представляет собой высоту, на которую могла бы подняться жидкость при отсутствии движения
Уравнение Бернулли является выражением закона сохранения механической энергии движущейся жидкости, по этой причине все части уравнения представляют собой величины удельной энергии жидкости: z - удельная энергия положения,
5. Динамика реальной (вязкой жидкости) При изучении движения реальной (вязкой жидкости) можно пойти двумя разными путями: воспользоваться готовыми дифференциальными уравнениями и их решениями, полученными для идеальной жидкости. Учёт проявления вязких свойств осуществляется с помощью введения в уравнения дополнительных поправочных членов уравнения, вывести новые уравнения для вязкой жидкости. Для практической инженерный деятельности более приемлемым следует считать первый полуэмпирический путь, второй следует использовать лишь в тех случаях, когда требуется детальное изучение процесса движения вязкой жидкости. По этой причине ограничимся лишь записью систем дифференциальных уравнений Навье - Стокса и поверхностным анализом этих уравнений. 5.1. Система дифференциальных уравнений Навье - Стокса При Пренебрегая величинами вторых вязкостей (р = const), уравнения Навье - Стокса запишутся в следующем виде: К уравнениям Навье - Стокса в качестве дополнительного уравнения принимается уравнение неразрывности. Учитывая громоздкость и трудность прямого решения задачи в практической деятельности (в случаях, когда это считается допустимым) решение достигается первым методом (по аналогии с движением идеальной жидкости). 5.2. Уравнение Бернулли для элементарной струйки вязкой жидкости Выделим в элементарной струйке жидкости двумя сечениями 1 - 1 и 2
- 2 отсек жидкости. Отсек жидкости находится под действием сил давления В этом случае уравнение Бернулли примет следующий вид:
Величина 5.3. Уравнение Бернулли для потока реальной жидкости При массовом расходе в живом сечении элементарной струйки . ческая энергия жидкости проходящей через это сечение в единицу времени будет равна: Суммируя величины кинетической энергии всех элементарных струек проходящих через живое сечение потока жидкости, найдём полную кинетическую энергию для всего д живого сечения потока С другой стороны, полагая, что скорости во всех элементарных струйках одинаковы и равны средней скорости движения жидкости в живом сечении потока, таким же образом вычислим полную кинетическую энергию в этом же живом сечении потока. ' ' Вполне очевидно, что величины этих энергий не равны, т.е. Тогда коэффициент, учитывающий неравномерность распределения скоростей по сечению (коэффициент Кориолиса) можно определить как соотношение кинетических энергий: т? Внося эту поправку в уравнение для элементарной струйки жидкости, получим уравнение для потока конечных размеров. Практически а= 1.0- 2,0. Кроме коэффициента Кориолиса, учитывающего неравномерность
распределения кинетической энергии по живому сечкнию потока, существует
аналогичный показатель для величины количества движения, коэффициент Буссинэ Секундное количество движения для потока жидкости можно определить как интегральную сумму количества движения элементарных масс жидкости, протекающих через бесконечно малые площадки ds в пределах площади всего живого сечения S, т.е. Аналогичным образом, величина количества движения жидкости в живом сечении при условии равномерного распределения сколостей по сечению потока будет: Отсюда коэффициент Буссинэ определится следующим образом: В связи с тем, что величина коэффициента количества движения (коэффициент Буссинэ) невелика и не превышает 1,05, поправкой в расчётах обычно пренебрегают, 5.4. Гидравлические сопротивления Потери удельной энергии в потоке жидкости, безусловно, связаны с вязкостью жидкости, но сама вязкость - не единственный фактор, определяющий потери напора. Но можно утверждать, что величина потерь напора почти всегда пропорциональны квадрату средней скорости движения жидкости. Эту гипотезу подтверждают результаты большинства опытных работ и специально поставленных экспериментов. По этой причине потери напора принято исчислять в долях от скоростного напора (удельной кинетической энергии потока). Тогда: Потери напора принято подразделять на две категории: потери напора, распределённые вдоль всего канала, по которому
перемещается жидкость (трубопровод, канал, русло реки и др.), эти потери
пропорциональны длине канала и называются потерями напора по длине также принято исчислять в долях от скоростного напора Тогда полные потери напора можно представить собой как сумму всех видов потерь напора: Оценка величины местных потерь напора практически всегда базируются на результатах экспериментов, по результатам таких экспериментов определяются величины коэффициентов потерь. Для вычисления потерь напора по длине имеются более или менее надёжные теоретические предпосылки, позволяющие вычислять потери с помощью привычных формул. 5.5. Потери напора на местных гидравлических сопротивлениях Несмотря на многообразие видов местных гидравлических сопротивлений, их всё же можно при желании сгруппировать: потери напора в руслах при изменении размеров живого сечения, потери напора на местных гидравлических сопротивлениях, связанных с изменением направления движения жидкости, потери напора при обтекании преград. Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 |
|
|||||||||||||||||||||||||||||
![]() |
|
Рефераты бесплатно, реферат бесплатно, курсовые работы, реферат, доклады, рефераты, рефераты скачать, рефераты на тему, сочинения, курсовые, дипломы, научные работы и многое другое. |
||
При использовании материалов - ссылка на сайт обязательна. |