на тему рефераты
 
Главная | Карта сайта
на тему рефераты
РАЗДЕЛЫ

на тему рефераты
ПАРТНЕРЫ

на тему рефераты
АЛФАВИТ
... А Б В Г Д Е Ж З И К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я

на тему рефераты
ПОИСК
Введите фамилию автора:


Реферат: Отопление и вентиляция жилого дома с гаражом


-     двойную изоляцию.

Все электрооборудование гаража подлежит заземлению, также заземляются металлические части оборудования, которые могут оказаться под напряжением. Вкачестве заземления используются фундаменты здания, металлические конструкции здания и нулевые жилы питающих кабелей.

Система заземления принята типа ТТ, т. е. питающая сеть имеет точку непосредственно связанную с землей, а заземляющие проводники здания присоединяются к металлическому корпусу здания.

По ГОСТ 12.4.113-82 защитные системы и мероприятия по защите от поражения электрическим током в гараже должны обеспечивать напряжение прикосновения не выше:

42В - в помещениях без повышенной опасности и с повышенной опасностью;

12В - в особо опасных помещениях.

Питание оборудования должно осуществляться от сети напряжением не более 380В при частоте 50 Гц. В электроустановках должны быть предусмотрены разделительный трансформатор и защитно-отключающее устройство.

В электрических установках до 1000В минимальное значение сопротивления  изоляции  должно  быть не менее 0.5Ом, а сопротивление между заземляющим болтом и каждой доступной прикосновению металлической нетоковедущей частью изделия, которая может оказаться под напряжением, - не более 0.1 Ом.

4.2.6. Вредные вещества в воздухе рабочей зоны

В помещении гаража источниками выделения вредных веществ являются работающие двигатели автомобилей при въезде и выезде.

Основными вредностями являются оксид углерода СО, диоксид азота NO2, аэрозоли свинца, сернистый ангидрид SO2, не обладающие эффектом суммации действия. В подземном гараже запроектирована общеобменная вентиляция для ассимиляции вредных выделений от работающего двигателя автомобиля. Вытяжка предусмотрена из каждого автомобильного бокса из верхней и нижней зоны поровну.

4.3. Чрезвычайные ситуации

Согласно ГОСТ Р 22.0.02-94, чрезвычайной ситуацией называется состояние, при котором в результате возникновения источника чрезвычайной ситуации на объекте, определенной территории или акватории, нарушаются нормальные условия жизни и деятельности людей, возникает угроза их жизни и здоровью, наносится ущерб имуществу населения, народному хозяйству и окружающей среде.

Различают чрезвычайные ситуации по характеру источника (природные, техногенные, биолого-социальные и военные) и по масштабам (глобальные или национальные, региональные, местные и локальные или частные).

Источник ЧС:

-     опасное природное явление;

-     авария или опасное техногенное происшествие;

-     широко распространенная инфекционная болезнь людей;

-     сельскохозяйственных животных и растений;

-     применение современных средств поражения.

Наиболее возможной чрезвычайной ситуацией  в гараже может быть пожар. При возникновении пожара ответственный за проишествие должен:

-     отключить напряжение;

-     принять меры к эвакуации людей;

-     по телефону 01 сообщить дежурному пожарной охраны о случившемся;

-     при необходимости вызвать скорую помощь;

-     до прибытия пожарных начать тушить пожар самостоятельно при помощи углекислотного огнетушителя.

Пожар представляет собой неконтролируемое горение, развивающееся во времени и пространстве, опасное для людей и наносящее материальный ущерб.

Опасными факторами, воздействующими на людей и материальные ценности при пожаре, являются:

-     пламя и искры;

-     повышенная температура окружающей среды;

-     токсичные продукты горения и термического разложения;

-     дым;

-     пониженная концентрация кислорода.

К вторичным проявлениям опасных факторов пожара, воздействующих на людей и материальные ценности, относятся:

-     осколки, части разрушившихся аппаратов, агрегатов, установок, конструкций;

-     радиоактивные и токсичные вещества и материалы, вышедшие из разрушенных аппаратов и установок;

-     электрический ток, возникший в результате выноса высокого напряжения на токопроводящие части конструкций, аппаратов, агрегатов;

-     огнетушащие вещества.

Пожар сопровождается химическими и физическими явлениями: химической реакцией горения, выделением и передачей тепла, выделением и распространением продуктов сгорания, газовым обменом. Все эти явления на пожаре взаимосвязаны и протекают на основе общих законов физики.

Пожары в зданиях и сооружениях характеризуются быстрым повышением температуры, задымлением помещений, распространением огня открытыми путями и потерей конструкциями несущей способности.

По взрывопожарной и пожарной опасности все помещения и  здания  подразделяются на  категории - А, Б, В, Г, Д. Подземный гараж относится к пожароопасной категории В. К этой категории относятся помещения, в которых находятся горючие и трудно горючие жидкости, твердые горючие и трудно горючие вещества и материалы, причем они способны гореть при взаимодействии с водой, кислородом воздуха или друг с другом.

Для строительных конструкций важным фактором является огнестойкость. Огнестойкость – это способность строительных конструкций сохранять под действием высоких температур пожара свои рабочие функции, связанные с огне преграждающей, теплоизолирующей или несущей способностью. Огнестойкость строительных конструкций характеризуется пределом огнестойкости. Под пределом огнестойкости понимают время, по истечении которого конструкция теряет несущую или ограждающую способность.

Здания и сооружения, а также их части подразделяют по степеням огнестойкости на восемь групп – I, II, III, IIIa, IIIб, IV, IVa, V.

Минимальные пределы огнестойкости конструкций представлены в табл. 4.4.

 

Таблица 4.4

Минимальные пределы огнестойкости конструкций по степеням

огнестойкости зданий, час.

Наименование                     конструкции Степень огнестойкости
I         II        III      IIIа     IIIб     IV     IVа    V
Несущие стены 2,5        2         2         1        1       0,5     0,5    Н.Н

Наружные и внутренние не несущие

стены

0,5     0,25    0,25     0,25    0,25   0,25  0,25   Н.Н.
Колонны 2,5        2         2       0,15      1       0,5   0,25   Н.Н.
Несущие конструкции покрытий 1       0,75    0,75    0,25    0,75   0,25   0,25  Н.Н.
Элементы покрытий 0,5     0,25     Н.Н.   0,25    0,25   Н.Н.  0,25  Н.Н.

Обьемно-планировочные решения по зданию приняты с учетом защищенности от возникновения и распространения огня в случае пожара ,а также безопасных и достаточных путей эвакуации в соответствии со СниП21.01-972 «Пожарная безопасность зданий и сооружений» и СниП 2.08.02-89  «Общественные здания и сооружения».

По степени огнестойкости здание относится к  IIIА степени огнестойкости. Предусмотрены следующие  противопожарные мероприятия:

-планировка зданий обеспечивает безопасную эвакуацию людей из помещений через эвакуационные выходы;

-все двери на путях эвакуации открываются по направлению выхода из здания;

-двери лестничных клеток имеют приспособления для самозакрывания и уплотнения в притворах;

-двери в технические помещения,запроектированы противопожарными ,с пределом огнестойкости не менее 1 час;

-все проходы по ширине и высоте обеспечивают безопасную эвакуацию людей из здания;

-внутреняя отделка путей эвакуации запроектирована из негорючих материалов;

-в гараже установлены пожарные краны и первичные средства тушения пожара;

-предусмотрена блокировка систем вентиляции с системой автоматической сигнализации о возникновении пожара;

- предусмотрена противодымная система вентиляции в гараже с огнестойкостью 1 час;

- здание оборудуется извещателями пожарной сигнализации с выводом на пульт в помещение дежурного персонала;

-наружное пожаротушение осуществляется от существующих пожарных гидрантов, установленных на городской сети водопровода;

-внутреннее пожаротушение осуществляется от пожарных кранов.

4.4.Заключение

Системы отопления, вентиляции и дымоудаления жилого дома с подземным гаражом запроектированы с учетом требований техники безопасности при их эксплуатации. Не наносят вреда окружающей среде и не нарушают санитарно-гигиенические нормы, соответствуют нормальным условиям отдыха.

5. ЭКОЛОГИЧЕСКАЯ ЧАСТЬ  ПРОЕКТА

5.1. Характеристика объекта

          Жилой дом с подземным гаражом размещается в городе Екатеринбурге по ул. Народной Воли.

Объект расположен в зоне жилой застройки. Рельеф местности спокойный. C cеверной стороны к объекту примыкает территория ДК «Автомобилист», с других сторон - территория жилой застройки.

Подземный гараж разделен на 52 бокса. Среднее количество выездов автомобилей из помещения в 1 час равно 7, время выезда – 30 минут.

5.2.Характеристика вредных веществ.

 

Источниками выделения вредных веществ являются работающие двигатели автомобилей при въезде и выезде.

Основными вредностями являются оксид углерода СО, диоксид азота NO2, аэрозоли свинца и сернистый ангидрид SO2, не обладающие эффектом суммации действия.

В качестве предельно допустимых приняты максимальные разовые концентрации вредных веществ (кроме свинца) согласно [24]. Для свинца в качестве предельно допустимой принята среднесуточная концентрация в виду отсутствия максимально разового норматива.

Таблица 5.1.

Наименование вещества Класс опасности

ПДК,

мг/м3

Двуокись азота NO2 2 0,085
Сернистый ангидрид SO2 3 0,5
Окись углерода СО 4 5
Свинец 1 0,0003

5.3. Расчет количества вредных веществ выбрасываемых в атмосферу

Расчет произведен на основании [25]. Количество загрязняющих веществ, выделяемых в атмосферу при движении автомобилей в закрытых стоянках определяется по формуле:

Gj= qi*L*Aэ*i*Kc/tв,    (5.1.)

где    Gj - масса выброса j-того загрязнителя,г/с;

n - количество типов автомобилей;

qi - удельный выброс j-того загрязнителя одним автомобилем i-того типа, г/км [25];

L - условный пробег одного автомобиля за цикл на территории гаража с учетом времени запуска двигателя, движения по территории, км [25];

Aэ - эксплутационное количество автомобилей в гараже с учетом коэффициента выезда, принятым равным 0,8;

Kc - коэффициент, учитывающий влияние режима движения автомобиля.[25];

tв - время выезда или въезда автомобиля в секундах.

Время выезда автомобилей в расчете принято 0,5ч.

Количество выделяющейся окиси углерода СО равно:

Gco=20,8*0,5*2*0,8*1,4/1800=0,052 г/с.

Аналогично расчитываются остальные количества выделяющихся вредных веществ:

двуокись азота              GNO2==0,0003 г/с.

сернистый ангидрид     GSO2=0,00012 г/с,

аэрозоли свинца           GPb=0,00004 г/с.

Валовые выбросы загрязняющих веществ равны выбросам при выезде и въезде автомобилей в течении дня, умноженным на число дней в году.

Валовый выброс окиси углерода СО:

Мсо=0,0683 т/год;

Валовый выброс двуокиси азота NO2:

МNO2=0,00039 т/год;

Валовый выброс аэрозолей свинца:

Мcвинца=0,000052 т/год;

Валовый выброс сернистого ангидрида SO2:

МSO2=0,00016 т/год.

5.4. Расчет рассеивания выбросов в атмосфере.

Расчет рассеивания в атмосфере одиночных выбросов вредных веществ производится в соответствии с[24].Задачей расчета является определение концентраций оксида углерода СО, двуокиси азота NO2, аэрозолей свинца и сернистого ангидрида SO2 на уровне земли при касании ее облаком вредностей. Эти данные необходимы для сопоставления с допустимыми значениями для зоны жилой застройки.

Для одиночного источника вредных выбросов должно выполняться условие :

Cx<=Ф,                (5.2.)

где Сx - концентрация вредного вещества в расчетной точке, мг/м3;

F-допустимое повышение концентрации вредного вещества в атмосфере в результате рассеивания,определяется как разность предельно допустимой концентрации(ПДК) и фоновой Сф,мг/м³.

При наличии нескольких разнородных вредных веществ, не обладающих суммацией действия, условие Cx<=Ф должно выполняться для каждого из них.

Распространение концентрации вредных веществ в направлении ветра подчиняются следующим закономерностям.

При опасной для данного источника скорости ветра на некотором расстоянии Xм от него наблюдается максимальная концентрация  вредного вещества в приземном слое атмосферы См.

Исходные данные для расчета рассеивания окиси углерода СО:

V=3,5 м³/с;

А=160 (для Урала);

М=0,052 г/с;

F=1;

hp=1;

D=0,5 м;

H=28 м;

DT=3;

l,e-расстояние от ИВВ до ближайшей и дальней границ зоны жилой застройки (l=30м,e=200м).

Максимальное значение приземной концентрации вредного вещества находится в зависимости от параметра f , определяющего тип выбросов (холодные или нагретые)

f=1630*V2/(D3*H*DT),                   (5.3.)

где    V - расход выбрасываемого воздуха ,м3/с;

D - диаметр трубы,м;

H - высота трубы,м;

DT - разность температур выбрасываемого воздуха и наружного

воздуха,K;

f=1630*3,5/0,5*28*3=136>100 - выбросы холодные, и формула для расчета максимального значения приземной концентрации вредных веществ См,мг/м3,имеет вид:

См=A*M*F*D*n*hp/8*H*V,                (5.4.)

где    А - коэффициент температурной стратификации,(с2/3*мг*град1/3)/г;

М - количество вредного вещества , выбрасываемого в атмосферу, г/с;

F - безразмерный коэффициент, учитывающий скорость оседания вредных веществ в атмосферном воздухе, F=1;

N - коэффициент, учитывающий условия выхода газовоздушной смеси из устья ИВВ (при gм < 0,5   n=4,4* gм=4,4*0,41=1,83);

hp - коэффициент, учитывающий влияние рельефа местности (при перепаде высот менее 50 м hp=1);

d - коэффициент распространения максимума концентрации вредности (при gм < 0,5  d=5,7);

Откуда См=160*0,052*1*0,5*1,83*1/8*28*3,5=0,0032 мг/м³.

Расстояние от источника Xм , на котором будет максимальная концентрация вредностей См определяется по формуле:

Xм=(5-F) *d*H /4,                  (5.5.)

где    d - коэффициент распространения максимума концентрации вредности (при gм < 0,5 d=5,7);

Xм=(5-1) *5,7*28/4=160 м.

Концентрация Сx по оси рассеивания облака вредности в любой точке с относительной координатой x=x/xм определяется по формуле:

Сx=S1*Cм,          (5.6.)

где    S1- коэффициент, учитывающий изменение концентрации по оси факела.

XL=L/Xм=30/160=0,19 м;

Xe=e/Xм=200/160=1,25 м;

При X<1:   S1=3X-8X+6X;

S1,L =0,165;

При1<X<8   S1=1,13/(0,13X+1)

S1,e=0,94;

Откуда, Сx,L=0,165*0,0032=0,00053 мг/м³;

    Сx,e=0,94*0,0032=0,003 мг/м³.

Схема определения расстояния X до расчетной точки приведена на рис. 5.1.

Рис. 5.1. Схема определения расстояния X до расчетной точки

Условие Cx<=Ф выполняется (Сx=См=0,0032 мг/м³< 0,3 мг/м³), cледовательно зона жилой застройки пригодна для жилья.

Аналогично расчитываются рассеивания по остальным вредным выделениям.

Для двуокиси азота NO2:

См=0,000018 мг/м³;

Условие Cx<=Ф выполняется (Сx=См=0,000018 мг/м³< 0,085 мг/м³), cледовательно зона жилой застройки пригодна для жилья.

Для сернистого ангидрида SO2:

См=0,0000074 мг/м³;

Условие Cx<=Ф выполняется (Сx=См=0,0000074 мг/м³< 0,45 мг/м³), cледовательно зона жилой застройки пригодна для жилья.

Для аэрозолей свинца Pb:

См=0,0000025 мг/м³;

Условие Cx<=Ф выполняется (Сx=См=0,0000025 мг/м³< 0,0003 мг/м³), cледовательно зона жилой застройки пригодна для жилья.

5.5. Влияние застройки

Исходные данные :

Зона ветровой тени -II

Размеры здания  Lш x Lд=25,8 x 46,2 м,

Высота здания Hзд=23 м.

Влияние застройки на рассеивание выбросов в атмосферу связано с изменением характера воздушных течений вблизи здания.

При обтекании здания ветровым потоком образуются 3 зоны аэродинамической тени: зона I – с заветренной стороны, II – над кровлей здания, III – с наветренной стороны. Расчет I и III зон аналогичен.

Габариты аэродинамической зоны тени: максимальная высота и протяженность составляют

НII=Нзд+0.4L*=23+0,4*23=32,2 м,

LII=2L*=2*23=46 м.

Границы зоны находим с учетом коэффициентов fII и расстояния X от стены здания до расчетной точки:

хи/LII=0,65, fII=0,35,

hII(x)=Нзд+ fII(х)*L*=23+0,35*23=31 м.

Схема расположения зоны аэродинамической тени приведена на рис. 5.2.   

Рис. 5.2. Схема расположения зоны аэродинамической тени

Из схемы видно, что ИВВ находится в зоне аэродинамической тени.

Учет влияния застройки проводится с помощью коэффициента hм:

hм=r3hмSzм+S1(1-zм),                   (5.7.)

где, все коэф. определяем с помощью графиков [ 24 ];

r3 – учитывает изменение опасной скорости Uм при затенении ИВВ зданием Uм=0,5 (т.к. n’м=0,4);

Uм/Uм=1 – в зависимости от этого значения определяем r3=1 и Р3=1

Н/Нзд=31/23=1,3 => h=8 – учитывает изменение структуры воздушного потока;

S – влияние турбулентной диффузии, определяем с помощью t:

t=LIÖh/(1.1Рз*хм),                  (5.8.)

t=52Ö8/(1.1*1*160)=11,1,

тогда S=0,35;

zм – влияние колебаний ветрового потока, определяем с помощью jкÖUм=4.9, где jк определяем по Lш/Lд=0,4;

jк =15, откуда zм=0,16;

S1 определяем по хв/Рзхм=50/160=0,3;

S1=0,7;

hм=1*8*0,35 *0,16+0,7(1-0,16)=1,03;

Определяем максимальную концентрацию См* с учетом застройки для СО:

См*=См*hм=0,052*1,03=0,05 мг/м³.

Расстояние хм до точки с концентрацией См* равно (хм при Н/Нзд>1):

      1/zм+(V1xв/Р3хм)-1

хм= ¾¾¾¾¾¾¾¾ * хм,

       1/zм+ V1-1

 


где  V1=r3*h*S=1*8*0,35=2,8, следовательно хм=161 м.

Влияние жилой застройки практически не сказалось на смещении точки с максимальной концентрацией от ЗЖЗ к трубе и увеличению максимальной концентрации.

5.6. Расчет экономического ущерба по укрупненным показателям.

Затраты на предупреждение загрязнений включают затраты на создание систем очистки и затраты на изменение технологии с целью уменьшения выбросов вредных веществ.

Затраты вызванные воздействием загрязнений, определяются затратами на медицинское обслуживание заболевших в результате загрязнения окружающей среды, а также затратами на компенсацию потерь от снижения производительности труда и невыхода на работу по болезни.

Сумма этих двух типов затрат называется экономическим ущербом.

Величина экономического ущерба У определяется по формуле:

У=g*s*f*M,                   (5.10.)

где    g - константа,руб/т выброса; g=2,4*kи*kти;

ки,кти - коэффициенты инфляции;

s-показатель опасности загрязнения,принимаемый в зависимости от типа загрязняемой территории:для населенного пункта s=10;

f - коэффициент учитывающий условия рассеивания ;

М - приведенная масса годового выброса,т/год:

М=åАi*mi ,                   (5.11.)

где    Аi-показатель относительной опасности вредного вещества;

mi-масса i-того выброса,т/год. У=2,4*14,2*4*10*(5*0,0683+330*0,00016+275*0,00039+55000*0,000052)=4580 руб.

 

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

1.   СНиП 2.01.01-82. Строительная климатология и геофизика. – М.: Стройиздат, 1983 г.

2.   СНиП II-3-79**. Строительная теплотехника. Госстрой СССР – М.: Стройиздат, 1986. – 32 с.

3.   СНиП 2.04.05-91. Отопление, вентиляция и кондиционирование воздуха. Госстрой СССР – М.: Стройиздат, 1987. – 64 с.

4.   СНиП IV-5-82. Сборник единых районных единичных расценок на строительные конструкции и работы. Сборник 20. Вентиляция и кондиционирование воздуха.

5.   Технико-экономическое обоснование проекта: Методические указания по выполнению курсовой работы и дипломного проекта / М.А. Королева,А.В. Румянцева. Екатеринбург: УГТУ-УПИ, 2

6.   СНиП III-4-80. Техника безопасности в строительстве. М.: Стройиздат, 1983 г.

7.    Б.Н.Юрманов. Автоматизация систем отопления, вентиляции и кондиционирования воздуха.М.: Стройиздат, 1986.- 62 с.

8.   ВСН 01-89. Ведомственные строительные нормы проектирования предприятий по обслуживанию автомобилей. Росавтотранс. 1990.

9.   Справочник проектировщика промышленных,жилых и общественных зданий и сооружений. Внутренние санитарно-технические устройства. Ч.1. Отопление, водопровод, канализация. /Под ред. И.Г.Староверова.  – М.: Стройиздат, 1964г. – 429 с.

10.       Справочник проектировщика. Внутренние санитарно-технические устройства. Ч.1. Отопление, водопровод, канализация. /Под ред. И.Г.Староверова. – 3-е издание, перераб. и доп. – М.: Стройиздат, 1975. – 429 с.

11.       Справочник проектировщика. Внутренние санитарно-технические устройства. Ч.2. Вентиляция и кондиционирование воздуха. /Под ред. И.Г.Староверова. – 3-е издание, перераб. и доп. – М.: Стройиздат, 1978. – 504 с.

12.       Курсовое и дипломное проектирование по вентиляции гражданских и промышленных зданий: Учебное пособие для вузов /В.Я.Титов, Э.В.Сазонов, Ю.С.Краснов, В.И.Новожилов. – М.: Стройиздат, 1985. – 208 с.

13.       СНиП 2.01.07-85. Нагрузки и воздействия. Госстрой СССР – М.: ЦИТП Госстроя СССР, 1986. – 36 с.

14.       Теоретические основы вентиляции. Аэродинамика:Учебное пособие.2-е изд.перераб. и доп./Р.Н. Шумилов.Екатеринбург УГТУ, 2000-92с.

15. Пособие 4.91 к СНиП 2.04.05-91.Противодымная защита при пожаре.Москва, 1992 г. 

17.   Отопление и вентиляция. Учебник для вузов. Ч.2. Вентиляция. /Под ред. В.Н.Богословского. – М.: Стройиздат, 1976. – 439 с.

18."Вентиляция здания гражданского назначения" Методические указания по выполнению курсового проекта по курсу "Вентиляция" /Ю.А.Иванов, М.Г.Ушаков, Р.Н.Шумилов. Екатеринбург, УПИ 1992 - 39с

19.Охрана труда:Учебное пособие для инж.-экон.спец.вузов./ДенисенкоГ.Ф.-М.:Высш.шк.,1985-319с.,ил.

20. СНиП IV -4-82 "Сметные нормы и правила" Часть Ш "Материалы и изделия для санитарно – технических работ", М, Стройиздат 1984 г. 

21. СНиП П – 4-79 "Естественное и искусственное освещение", М., Стройиздат 1981 г.

22. СНиП 2.09.04-87 "Административные и бытовые здания", Госстрой СССР - М.Стройиздат 1988г.

23.СНиП 2.08.02-89"Общественные здания и сооружения",

24.Загрязнение атмосферы выбросами предприятий: Методические указания для практических занятий и дипломного проектирования./Ю.И.Толстова, Р.Н.Шумилов, Е.А.Комаров, Л.Г.Пастухова. Екатеринбург: УГТУ, 1996. 40c.

25.Общесоюзные нормы технологического проектирования предприятий по обслуживанию автомобилей. Росавтотранс. 1991.


Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10


на тему рефераты
НОВОСТИ на тему рефераты
на тему рефераты
ВХОД на тему рефераты
Логин:
Пароль:
регистрация
забыли пароль?

на тему рефераты    
на тему рефераты
ТЕГИ на тему рефераты

Рефераты бесплатно, реферат бесплатно, курсовые работы, реферат, доклады, рефераты, рефераты скачать, рефераты на тему, сочинения, курсовые, дипломы, научные работы и многое другое.


Copyright © 2012 г.
При использовании материалов - ссылка на сайт обязательна.