на тему рефераты
 
Главная | Карта сайта
на тему рефераты
РАЗДЕЛЫ

на тему рефераты
ПАРТНЕРЫ

на тему рефераты
АЛФАВИТ
... А Б В Г Д Е Ж З И К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я

на тему рефераты
ПОИСК
Введите фамилию автора:


Дипломная работа: История системного подхода в науке и технике


Это отнюдь не случайно, поскольку почвоведение как наука о почве - поверхностном слое земной коры, несущем растительный покров и характеризуемом качественно особым свойством - плодородием - родилась в России и была создана в 1860-1880-х гг. трудами Ф.И. Рупрехта и В.В. Докучаева. Двадцатый век и в этой области принес переворот, поскольку К.К. Гедройц в 1910-х гг. создал новое междисциплинарное направление - коллоидную химию почв и обнаружил в почвах “поглощающий”, или коллоидный комплекс, определяющий динамику почвенных процессов. Благодаря этому открытию Гедройцу удалось создать эффективную теорию мелиорации почв.

Учения об экосистеме и биогеоценозе сыграли важнейшую роль в построении концепций биосферы и ноосферы (см. ниже). Здесь же необходимо подчеркнуть наряду с огромным значением деятельности человека для окружающей среды еще и другую сторону вопроса - неотъемлемость человека от природных корней его существования. В основе всех сложнейших видов человеческой деятельности лежат достижения эволюции, хотя конечно, сами эти виды деятельности далеко не сводятся к своей биологической основе и не исчерпываются ею. Например, интеллектуальная деятельность была бы невозможна без накапливаемых в течение жизни условных рефлексов; управление механизмами, в том числе такими сложными, как компьютеры - без сенсорной базы человека (органов чувств с их характерным диапазоном, включая слух, цветное зрение и т.д.), возникшей в ходе эволюции и являющейся ее наследием. Собственно именно из-за этой неразрывности природного и интеллектуального, знание современных естественнонаучных концепций является необходимым специалистов в области гуманитарных наук.

3.33 Современный уровень знаний в науках о Земле

Если говорить только о новом времени, то в области наук о Земле роль, сходную с ролью дарвинизма в биологии, сыграли работы Ч. Лайелля (1797-1875), доказавшие однородность физических факторов, формировавших поверхность Земли, сейчас и в отдаленные геологические эпохи. Это помогло решить продолжавшийся в течение XVIII - первой половины XIX в. спор “вулканистов” и “нептунистов”, выдвигавших на первый план соответственно факторы, связанные с деятельностью вулканов и с работой воды. В налаживании связи между геологическими и биологическими дисциплинами особую роль сыграл опубликованный в 1875 г. в Вене труд Э.Ф. Зюсса “Возникновение Альп”, где введено важнейшее понятие биосферы - оболочки Земли, являющейся областью распространения жизни и ареной деятельностью организмов. Благодаря этому получила законченный вид модель Земли как шара (или близкого к шару слегка сплюснутого “геоида”), в центре которого находится массивное ядро, а по периферии от него - сферические оболочки, “геосферы”: мантия, литосфера (она же земная кора - твердая, каменистая оболочка Земли) и гидросфера - прерывистая водная оболочка (моря, океаны, озера, реки и т.д.). Очевидно, что биосфера охватывает часть гидросферы (кроме некоторых глубоководных участков или водоемов, перенасыщенных солями) и самые нижние слои атмосферы, а на поверхности суши образует сплошной - если учитывать микроорганизмы - покров. Но при этом не обращалось специального внимания на деятельность человека, по существу надстраивающую над биосферой еще одну оболочку. Концепция биосферы эффективно способствовала приданию завершенности всей системе классического естествознания.

Появившиеся в результате обновления в течение XX в. естественно-научных представлений практически во всем их объеме, новые концепции природы и материи не могли не коснуться и области исследований строения Земли. Открытие П. Кюри и М. Склодовской в 1899-1903 гг. явления радиоактивного распада позволило разработать методику определения абсолютного возраста горных пород. Возраст Земли оказался равным не нескольким десяткам миллионов лет, как полагали ранее, а, по крайней мере, двум-трем миллиардам лет. Начальные этапы истории Земли стало возможным связать с космогонической эволюцией.

Была выявлена общность химического состава Земли и метеоритов. Изучена история земной атмосферы. Древнейшая атмосфера была весьма разреженной и состояла в основном из паров воды и из углекислого газа, современная же атмосфера образовалась как вторичная, причем весь свободный кислород в ней возник как продукт фотосинтеза, а азот - в результате вулканических извержений.

Выяснена структура такого грозного и опасного явления, как землетрясение. Его очаг представляет собой разрыв в земной коре, на глубине в большинстве случаев 20-30 км. На основании “стандартной” модели Земли, в основе которой лежат рассмотренные нами представления о земной коре, мантии и ядре, разработан метод определения очагов землетрясения - “сейсмический годограф

3.34 Учение Вернадского о биосфере и ноосфере

Важнейшим достижением в области наук о Земле в XX в. - достижением, которое в значительной мере относится и к биологическим, гуманитарным и техническим наукам, объединяя их в единое целое - было создание В.И. Вернадским (1863-1945) учения, глубоко укоренившегося в традициях русского естественнонаучного и философского мышления. Непосредственно же Вернадский исходил из концепций своего учителя, В.В. Докучаева (1846-1903), которые на основе своих исследований строения почв значительно углубил существовавшее и ранее учение о зональной структуре биосферы и области человеческого обитания на Земле (ойкумены), стал разрабатывать новые глобальные обобщения, получившие с двадцатых годов мировое признание. Прежде всего, Вернадский углубил учение Зюсса о биосфере, показав, что ее компоненты - атмосферный, гидросферный и литосферный (биосферы частично перекрывается с литосферой, т.е. земной корой, а именно с ее верхней частью) - непрерывно обмениваются потоками вещества и энергии (так называемые биогеохимические циклы миграции вещества и энергии).

Вернадский раскрыл планетарную функцию живого вещества, о которой мы отчасти уже говорили, упомянув, что весь свободный кислород земной атмосферы является результатом деятельности зеленых растений. Но также и горючие сланцы, нефти, угли, вообще каустобиолиты - горючие ископаемые органического происхождения - созданы живым веществом планеты. То же в значительной мере верно о известняках, глинах и таких продуктах их метаморфоза, как мраморы и граниты. К современной биосфере они не относятся, но составляют реликтовую “область былых биосфер”.

Учение о биосфере связывается с конкретно-биологическими исследованиями через уже рассмотренные нами понятия экосистемы и биогеоценоза, которые можно рассматривать как “ячейки" или элементарные структуры биосферы, как ее составляющие. Почва составляет неотъемлемую часть этих структур, источник их продуктивности, а следовательно и один из важнейших компонентов биосферы в целом. Огромное значение имеет вставшая перед человечеством в особенности именно в XX веке задача сохранить биологические ресурсы биосферы, нейтрализовать вредные последствия техногенных и антропогенных воздействий на нее. Биосфера устойчива благодаря многообразию своих живых компонентов (организмов, видов). Сознательно или несознательно снижая это разнообразие, человек подрывает основы своего биологического существования. Вернадский отчетливо видел это и считал, что одна из задач науки - предотвратить опасности, угрожающие биосфере.

3.35 Понятие ноосферы

При этом Вернадский пошел еще дальше и, опираясь на усовершенствованное им учение и биосфере, выдвинул концепцию еще одной оболочки Земли, ноосферы, сферы взаимодействия человека и биосферы (опосредованно также - природы в целом), для которой (для ноосферы как последней по времени формирования земной оболочки) определяющим факторов является человеческая деятельность.

Особенно важным при этом является технизованный и общественный характер этой деятельности. При рациональном подходе ноосфера, постепенно охватывая и пронизывая биосферу, не уничтожит ее богатств, поскольку человек как главный системообразующий фактор носсферы может и должен прилагать все усилия к их сохранению и (в том, что касается возобновимых, т.е. биологических ресурсов) приумножению, а также проводить мероприятия по охране природы, включая создание биосферных заповедников.

3.36 Неизбежность перехода биосферы в ноосферу

Чтобы уяснить себе соотношение биосферы и ноосферы, надо иметь в виду, что последняя по времени охватывает лишь ничтожный отрезок времени сравнительно с миллиардами лет существования биосферы; и тем не менее за этот малый отрезок, в особенности (если иметь в виду наиболее интенсивное развитие ноосферы) за XX век и даже меньше - за период существования того, что науковеды называют “большой наукой”, т.е. за последние полвека - ноосфера по порядку величины своих планетарных воздействий практически сравнялась с биосферой. Из космоса можно теперь наблюдать Землю как мощную радиоизлучающую звезду - благодаря радиостанциям и другим источникам техногенных излучений. Ноосфера является, с одной стороны, принципиально новым состоянием и завершающей стадией развития биосферы; но с другой стороны, она особая оболочка, поскольку пока еще не вся биосфера переходит в ноосферу. Со временем положение измениться и в конечном счете вся биосфера неизбежно перейдет в ноосферу.

Далее, ноосфера (буквальное значение этого греческого слова - “сфера ума”) есть плод дискретных человеческих интеллектов. Она не является в полном смысле - как, например, атмосфера - сплошной, но, тем не менее она достаточно непрерывна, чтобы можно было с основанием считать ее еще одной, пятой (наряду с литосферой, гидросферой, атмосферой и биосферой) оболочкой Земли или геосферой. Ведь в нее входят не только люди, но и все результаты их деятельности и влияния. Со всеми присущими другим оболочкам энергиями ноосфера сопоставима по мощности своего воздействия на природу. Благодаря космическим полетам ноосфера уже сейчас не только идеальным образом, через познание (зрение, телескопы) выходит за земные пределы, но и вполне материально - через космические зонды и другие аппараты - соприкасается с космосом, продолжая и развивая космическую функцию, присущую уже биосфере (зеленые растения как источник кислородного компонента атмосфера). Опыты по созданию искусственной пищи могут, в конечном счете, превратить человечество в автотрофную систему, что будет представлять собой прорыв и новацию по отношению ко всем имевшимся в течение миллиардов лет существования Вселенной формам использования энергии.

Параллельно с вариантом Вернадского, другие трактовки концепции ноосферы предложили во Франции Э. Леруа (1870-1954) и П. Тейяр де Шарден (1881-1955). Из них более разработан в естественнонаучном плане вариант Тейяра, рассматривавшего эволюцию Вселенной как цепь стадий усложнения единой субстанции - “ткани Универизма”, в свою очередь являющейся модификацией особого вида энергии - “радиальной энергии”, которая служит воплощением вечного стремления к процессу.

Завершение этого стремления - “феномен человека”, собственно и выражающийся в создании ноосферы, которую Тейяр понимает в общем так же, как Вернадский, но больше подчеркивает идеальный характер этой оболочки и духовный фактор технического прогресса. В работах Тейяра много недоконченного, неясного, требующего доработки; вместе с тем его идеи предвосхитили некоторые важнейшие концепции и подходы современного и быть может, даже будущего естествознания: тенденцию к синтезу естественнонаучного и гуманитарного подхода, видение прогресса как неотъемлемого принципа природы, понимание того, что в биологическом и геологическом познании так же, как в физическом, наблюдатель не может быть “осмыслен”: ноосфера в одинаковой мере выступает и как субъект, и как объект исследования.

3.37 Рациональное использование природных ресурсов и охрана биосферы

Как уже было сказано, охрана природы является одной из прикладных областей современной биологии; здесь можно добавить: также и физических, химических и технических наук, наук о Земле и (поскольку для эффективной охраны природы нужно воспитание людей в соответствующем духе) гуманитарных наук.

Между тем реально далеко не всегда (скорее наоборот!) деятельность человека является благотворной для окружающей среды. Например, в значительной мере вредным и создающим для многих организмов совершенно непривычную, часто губительную среду обитания является парниковый эффект, вызванный увеличением содержания в атмосфере таких компонентов, как СО, СО2 и СН4. Приведем только одно возможное последствие парникового эффекта: подъем уровня моря всего на 1м приведет к затоплению 25% дельты Нила и до 30% территорий такой страны, как Бангладеш. Нарушение озонного слоя атмосферы уже сейчас ведет к росту ультрафиолетового излучения и соответственно заболеваемости раком. Воздух загрязняется многими примесями, вплоть до ядовитых тяжелых металлов и сернистого газа, порождающего кислотные дожди, которые делают безжизненными внутренние водоемы. Неумеренное расширение орошаемых территорий уже вызвало гибель многих водоемов, в том числе таких крупных, как Аральское море. Истребление лесов ведет к размыванию почвы и к загрязнению внутренних водоемов, в конечном счете, и мирового океана.

Рациональное использование природных ресурсов и охрана биосферы представляют собой две стороны единой задачи, стоящей сейчас перед человечеством. Из всей площади суши почти половина уже занята пахотными, пастбищными и другими угодьями и плантациями, т.е. ее природный режим резко деформирован. В атмосферу ежедневно выбрасывается огромное количество углекислоты и других газов, что ведет, помимо загрязнения воздуха, к опасному потеплению климата вследствие парникового эффекта. Сельскохозяйственное использование ресурсов по крайней мере оставляет открытый путь для их возобновления, в то время как добыча каустобиолитов, металлов и т.д. истощает их запасы. Только рациональная система природопользования может спасти человека от опасности загрязнения среды и истощения ее ресурсов. В эту систему входит создание широкой сети охраняемых территорий всех рангов, внедрение давно уже разработанных технологий переработки отходов и создание новых, правовая регуляция охраны среды и природопользования. Природа Земли - наше невозместимое ничем достояние, и все страны, все человечество должны объединиться для решения труднейшей задачи сохранения и оптимального использования этого достояния.

Задачами рационального использования природных ресурсов является овладение экологически чистыми источниками энергии (ветром, геотермальными водами, солнечной энергией и т.д.), ограничение вредных выбросов, налаживание цикличного повторного использования отходов производства. Применяя биологические методы борьбы с вредителями, мы снижаем применение ядохимикатов. Редкие или вообще стоящие под угрозой виды организмов во многих случаях удается сохранить путем создания заповедников и заказников. Но пожалуй, наиболее общей и эффективной мерой в области охраны природы является воспитание у людей экологического сознания, включая понимание того, насколько - при современных технических средствах - легко нарушить и насколько трудно восстановить биосферу.

3.38 Нелинейная динамика

В "доквантовую" эпоху развития наука, техника и общество довольно неплохо обходились законами классической механики и математической логичными моделями расчетов, не обращая внимания на якобы незначительные вопросы, не подчиняющиеся расчетам. Но как ограниченные возможности экономики заставили экономить на значительных научно-технических проектах, вынудив с помощью системного подхода виртуально проигрывать большое число вариантов решений без их натурной реализации, так и возможности ограниченные прежних подходов к моделированию хаотических процессов заставили искать новые средства для их описания. Активное изучение подобных процессов, насчитывающее около двух десятилетий, осуществляется в рамках новой дисциплины, называемой нелинейной динамикой.

Достижения в этой среде позволяют говорить о возможности управления сложными системами. "Эффект бабочки" из рассказа Рея Брэдбери "И грянул гром" подводит к идее о возможности направления развития целого государства "по другой траектории" одним телефонным звонком. Эти же достижения помимо необычайных возможностей в компьютерной графике, в создании искусственного интеллекта, в более достоверном описании законов рынка в экономике, привели к созданию целой индустрии прогноза, Модели, созданные на основе нелинейной динамики, предложенные американским ученым Дж. Маейр-Крессом и его коллегами, стали в свое время важным аргументом в пользу отказа от планов США по созданию СОИ. Выяснилось, что развертывание такой системы не повысит, а существенно понизит безопасность США.

Кроме того, при изучении хаотических процессов было выявлено явление их равновесия при определенных условия, т.е. при этих условиях происходит самоорганизация системы. Изучением таких систем занимается синергетика. Возможности синергетики помимо предсказания условий наступления состояний равновесия в хаотических системах открывает необычайные перспективы по эффективному сжатию и хранению огромных массивов информации.


4. Развитие системного подхода в технике

Инженерная деятельность занимает одно из центральных мест в современной культуре. Ведь все, что нас сегодня окружает, - небоскребы и автомобили, вычислительные устройства и космические корабли, атомные электростанции, железные дороги и самолеты - все это было бы невозможно без ее достижений.

 

4.1 Техническая деятельность в эпоху Древнего мира и античности

Что означает слово "техника"? Как и когда возникло слово "инженер" и сама инженерная деятельность как профессия? Чем отличаются техническая и инженерная деятельности?

Слово "техника" (греч. и лат. tehne - искусство, мастерство) имеет несколько значений. Оно может быть истолковано как мастерство, умение, сноровка, т.е. как система определенных навыков, выработанная для любого применения. В боле узком смысле техникой называют орудия труда, с помощью которых человек оказывает воздействие на природу (изготовление разнообразных предметов, процессов и явлений). Техника рассматривается как специфическая человеческая деятельность - техническая деятельность, посредством которой человек выходит за пределы ограничений, налагаемых его собственной природой. Техника - это также система технических знаний, включающая в себя не только научные, но и различные конструктивные, технологические и другие подобные знания, выработанные в ходе технической практики (технологии). Современная техника тесно связана с наукой.

Родственным слову "техника" считается слово "инженер". Оно произошло от латинского корня ingeniare? Что означает "творить", "создавать", "внедрять". Слово "ingenious" было впервые применено к некоторым военным машинам во II в. Человек, который мог создавать такие хитроумные устройства, стал называться - ингениатор (изобретатель), также и слово "механик" в первом своем значении применялось к умельцу, создателю машин, а "машина" - к ухищрению.

Крупнейшим естествоиспытателем древнего мира был тесно связанный с александрийской наукой Архимед (287-212 до н.э.). Он заложил основы механики, открыл законы рычага и определив силу, действующую на тело, погруженное в жидкость. Своим открытием Архимед положил начало статике жидкостей. В своих механических и математических работах Архимед примыкал к александрийской школе, в частности к работам Эрапосфена; ряд идей и методов Архимеда позволяют считать его предшественником математического анализа; в частности, Архимед впервые исследовал бесконечные ряды. Из результатов своих работ он наиболее ценил свои геометрические достижения: открытие методов вычисления объема шара и цилиндра, площади поверхности конуса и шара. Он же был первым, кто регулярно стал применять физические закономерности к построению машин и вообще в области техники в особенности военной. Архимед погиб при защите своего родного города Сиракуз от осадивших его римлян.

Галилей первым экспериментально показал, что воздух - тело, имеющее тяжесть, и вычислил его удельный вес. Его опыты по механике тел животных поставили на количественную основу гениальные догадки Леонардо. Экспериментами по определению прочности веществ Галилей заложил начало сопротивлению материалов как дисциплине.

Инженерная деятельность вначале носила военный характер, т.к. инженер руководил созданием военных машин и фортификационных сооружений. Таким инженером был, например, Леонардо да Винчи. До этого времени инженер и архитектор практически не различались - это тот, кто руководит созданием сложных искусственных сооружений.

В XIX в. с развитием машинного производства появились многочисленные инженеры-механики. Данное событие можно назвать ключевым в формировании понятия "инженер" в современном смысле. В ХХ в. инженерия разделилась на множество групп и подгрупп: физическая (электрическая, оптическая, механическая и т.д.), химическая, биохимическая инженерия, информационная и вычислительная техника представляют собой лишь некоторые ее разделы. Но они имеют характерную черту: инженер - это не тот, кто действительно делает искусственный объект, а тот, кто управляет процессом его создания, планирует или проектирует сложную техническую систему.

Следует различать инженерную и техническую деятельность. Современная техническая деятельность по отношению к инженерной несет на себе исполнительную функцию, направленную на непосредственную реализацию в производственной практике инженерных идей, проектов и планов. Инженерная деятельность выделилась на определенном этапе развития общества из технической деятельности, которая присуща человеческому обществу на самых ранних его стадиях и связана с изготовлением орудий труда. Она возникает тогда, когда изготовление орудий уже не может основываться только на традиции, ловкости рук, смекалке, а требует ориентации на науку, целенаправленное использование для этого научных знаний и методов. Теперь именно инженерная деятельность занимает промежуточное место между исполнительской технической деятельностью и наукой.

Предыстория инженерной деятельности разворачивается в недрах технической деятельности длительного периода ремесленного творчества (первобытного, античного рабовладельческого, средневекового феодального обществ). Но только в условиях раннего капиталистического общества создаются условия для того, чтобы она постепенно стала особой профессией, имеющую ориентацию на научную картину мира и целенаправленное применение в технической практике научных знаний.

В древности не было сознательной ориентации техников на науку вплоть до эпохи Возрождения. Современная культура, начиная с эпохи Возрождения, ориентирована на создание, изобретение нового, на научно-технический прогресс. Древние культуры были каноническими, ориентированными на освещенную веками традицию, поэтому в те далекие времена не могло быть изобретателей в их современном понимании, хотя изобретения как таковые конечно были.

Способность делать орудия - неотъемлемая черта человека разумного. Выделившись из природы, человек создал вокруг себя "искусственный мир", "вторую природу", без которой немыслимо существование современной цивилизации. И все это было бы невозможно без знания, без науки. Именно на пересечении знания, науки и практики возникла профессия инженера.

Уже у древних вавилонян можно найти зачатки дифференциального исчисления, а в древнем Египте - инженеров. Знания вавилонян об окружающем их мире были созданы практической необходимостью. Многие из этих знаний так и остались в области чистой практики и передавались из поколения к поколению только устно (например, как большинство ремесленных приемов, навыков и рецептов). Нет данных о том, что древние строители занимались техническими расчетами, если не считать приходно-расходных расчетов, требовавших преимущественно знания арифметики и некоторых элементом геометрии. И хотя человечество до сих пор удивляется красоте и грандиозности египетских пирамид, вряд ли можно назвать создателя первой из них инженером в современном смысле этого слова. Свидетельством этому может служить, например, диалог между двумя писцами Хори и Аменемоном, сохранившийся в древних египетских папирусах (XIII в. до н.э.). Хори упрекает Аменемона в недостаточной компетенции, и эти упреки служат яркой иллюстрацией того, что именно требуется от “ученого” писца: Аменемон, оказывается, не умеет вычислить необходимое количество пайков для отряда войска, вычислить размеры и количество строительных материалов для возведения строительной насыпи, составить расчеты для установки каменного колоса и т.д. * Все это такие сведения, которые необходимы в повседневной практической деятельности. Сама же практика была эмпирична, опиралась на традиции, умение, догадку.

Страницы: 1, 2, 3, 4, 5, 6, 7


на тему рефераты
НОВОСТИ на тему рефераты
на тему рефераты
ВХОД на тему рефераты
Логин:
Пароль:
регистрация
забыли пароль?

на тему рефераты    
на тему рефераты
ТЕГИ на тему рефераты

Рефераты бесплатно, реферат бесплатно, курсовые работы, реферат, доклады, рефераты, рефераты скачать, рефераты на тему, сочинения, курсовые, дипломы, научные работы и многое другое.


Copyright © 2012 г.
При использовании материалов - ссылка на сайт обязательна.