на тему рефераты
 
Главная | Карта сайта
на тему рефераты
РАЗДЕЛЫ

на тему рефераты
ПАРТНЕРЫ

на тему рефераты
АЛФАВИТ
... А Б В Г Д Е Ж З И К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я

на тему рефераты
ПОИСК
Введите фамилию автора:


Дипломная работа: История системного подхода в науке и технике


В то же время говорить о целесообразности реагирования организмов можно далеко не всегда: сталкиваясь с непривычными стимулами, они вполне могут поступать себе во вред. Вспомним о мотыльках, летящих на огонь, или о “самоубийствах” китов, выбрасывающихся на берег. Как раз устойчивость (к внешним воздействиям) параметров внутренней седы организма, реализуемая на основе системы обратных связей - гомеостаз - является более отчетливой характеристикой живых систем. Примером гомеостаза может служить выравнивание артериального давления после того, как изменение давления воспринимается барорецепторами сосудов, те передают сигнал в мозговые центры, откуда другой сигнал направляется к гладкой мускулатуре сосудов и снижает ее тонус, а это в свою очередь сигнализируется в мозг, который прекращает посылать расслабляющие импульсы. Не только организмам, но и другим живым системам свойствен гомеостаз: генетический гомеостаз представляет собой условие существования популяций, он заключается в поддержании (при возникающем равновесии внешнем воздействии) их генетической структуры. Однако как момент в определении специфики жизни гомеостаз немного дает, ибо присущ, как мы видели, и чисто химическим системам. Он встречается и в физических и технических системах: известен сконцентрированный У.Р. Эшби в 1948 г. “гомеостат” - система из четырех магнитов с перекрестными обратными связями. При отклонении системы от равновесного состояния магниты перемещаются случайным образом, “отыскивая” новое равновесное положение. Гомеостат Эшби мог даже до известной степени обучаться, компенсируя частичную поломку и восстанавливая связи нарушенные под влиянием изменений в среде, т.е. проявлял зачаточную целесообразность. Сложность тоже понятие относительное: была ли Вселенная в целом до появления жизни проще, чем какой-нибудь бактериофаг?

Более специфично для жизни явление размножения - воспроизведение себе подобных. Однако и ему есть аналогии в неживой природе: размножение кристаллов в насыщенном растворе, а также деление атомного ядра. При поглощении нейтрона ядра атома урана меняет форму, образуется “шейка”, а после ее уточнения и разрыва - два разлетающихся осколка, которые в свою очередь испускают нейтроны и т.д., причем все эти нейтроны подобны первому во всяком случае больше, чем организмы своему прародителю. При бета-распаде (распаде атомного ядра, сопровождающемся вылетом из него бета-частицы - электрона или позитрона) увеличивает число протонов или нейтронов, в зависимости от разновидности распада (b - или b+).

Это формальное возражение следует иметь в виду, тем не менее, по существу размножение представляет собой достаточно оригинальное свойство именно живого: “достаточно" для того, чтобы быть положенным в основу определения жизни. Вот один из вариантов такого определения: “жизнь есть форма существования высокоупорядоченных открытых систем, способных к целесообразной реакции и к размножению”. С древнейших времен, как только люди стали пытаться определить жизнь в отличие от всего остального, они опирались на этот признак. Что заповедует в Библии Бог живым существам, творя их? Не реагировать ли, не обмениваться ли веществом и энергией со средой, не быть сверхсложными? Нет, но: “плодитесь и размножайтесь”. Отсюда можно видеть, что с самого начала этот признак как очевидно важный, в том числе и практически, наиболее привлекал внимание. По истечении тысячелетий он не стал менее важен, но постигнул научно и стал предметом рассмотрения наиболее, пожалуй, специфической из биологических дисциплин: генетики, науки о наследственности временного естествознания, появление первых организмов на Земле, стало возможным как заключительный этап химической эволюции.

Развитие современной генетики началось одновременно с развитием других отраслей постклассического естествознания - в первых годах XX в., с переоткрытия несправедливо забытых перед тем законов Менделя (1900 г.) и введения в 1909 г. понятия “ген” (элементарная единица наследственности; как позднее выяснилось - отрезок молекулы нуклеиновой кислоты).Г. Мендель (1822-1884) в своей классической работе 1865 г. “Опыты над растительными гибридами" не употреблял, конечно, этой современной терминологии, но открыл существеннейшие закономерности наследственной передачи: независимость комбинирования генов (он писал: “наследственных факторов”), рецессивность и доминирование (см. ниже). По терминологии XX в., каждый ген лежит в основе какого-либо признака (впрочем, есть случаи определения признака несколькими генами и влияния гена на несколько признаков - упомянем об этом для полноты картины, но абстрагируемся от этих случаев). Гены и соответственно признаки при наследственной передаче дискретны и передаются независимо один от другого.

3.25 Теория эволюции Дарвина и ее синтез с генетикой

Генетика в тех ее формах, какие она приобрела в первую половину XX столетия, удачно объясняла постоянство наследственной природы организма, но в меньшей степени эффективно давала интерпретацию изменений этой природы. Между тем независимо от генетики (так сложилось первоначально) такую интерпретацию давало эволюционное учение и в особенности возникший в середине XIX в. дарвинизм.

Предположения о том, что современный растительный и животный мир не существовал извечно, но представляет собой нечто исторически возникшее и изменявшееся, бывали еще в древнем мире. Эти догадки принимали форму креационизма, т.е. учения о сотворенности жизни; иногда также форму учения о самозарождении жизни в неживых субстратах (иле, морской воде и т.д.). Постепенно накапливался позитивный материал (селекция, находки остатков вымерших организмов, обнаружения атавизмов), свидетельствовавший об историчности всех проявлений жизни.

С 1796 г. берет начало палеонтология - наука о строении, системе и свойствах ископаемых организмов. Сначала возникла палеонтология позвоночных (работы Ж. Кювье, 1769-1832, который был также основателем сравнительной анатомии), затем и беспозвоночных (1810-е гг. - работы Ж.Б. Ламарка (1744-1829), автора первой целостной эволюционной теории). Успехи биологии дали людям средства для борьбы со многими заболеваниями, в том числе инфекционными, и поставили на научную основу селекцию полезных организмов. Однако развитие наук о жизни тормозилось рядом ошибочных концепций: линнеевской догмой неизменности видов, теорией катастроф Кювье (жизнь на Земле якобы периодически погибла и затем создавалась вновь, в иной форме), учением Ламарка о наследовании приобретенных признаков.

Генетика послужила удачным дополнением дарвиновской теории эволюции. В частности, дискретность наследственных зачатков разъяснила одну из трудностей, с которой столкнулась концепция естественного отбора: при скрещивании вновь возникающие полезные признаки, казалось бы, должны были раствориться в массе старых бесполезных и исчезнуть. На самом деле они сохраняются даже при своей рецессивности и как сказано, в благоприятном случае вновь проявиться. К 60-м годам генетика столь тесно сплелась с теорией эволюции, что это привело к созданию синтетической теории эволюции (СТЭ) - концепции, объединившей генетику и отчасти молекулярную биологию (исследование биологических объектов на молекулярном уровне) с концепцией естественного отбора. Основные позитивные моменты теории Дарвина признаны СТЭ. В самом деле, сторонники СТЭ признают, давая новые толкование, также постулаты - теперь можно сказать, факты - как ненаправленная изменчивость (она объяснена как мутации - внезапные стойкие изменения генов; они как спонтанные встречаются в природе, а искусственно могут быть вызваны радиацией и химическими агентами - “мутагенами”); изоляция, способствующая накоплению изменений (в современном толковании: мутаций); естественный отбор (этот центральный для теории Дарвина пункт остался без изменений, т.е. трактуется как выживание наиболее приспособленных). Вместе с тем СТЭ отвергла как противоречащие реальности некоторые иногда встречаемые у Дарвина, хотя в целом не характерные для него ошибочные тезисы, например, иногда (далеко не всегда) допускаемое им наследование приобретенных признаков. Оно признавалось ранее многими, особенно Ж.Б. Ламарком, который создал на основе этого тезиса одну из наиболее ранних разновидностей эволюционного учения. У нас агрессивный вариант ламаркизма проповедовался в 1930-1960-х гг. “школой" Т.Д. Лысенко. Однако теперь идея наследования приобретенных признаков имеет лишь историческое значение.

3.26 Селекция, экология, клонирование, генетический код

Отбор действует преимущественно на уровне популяции. Поэтому в качестве неотъемлемого компонента в СТЭ вошла генетика популяций, т.е. изучение наследственных процессов в популяциях растений и животных; с генетикой популяций тесно связаны также включенные в СТЭ эволюционные аспекты - экологии - науки о связи организмов с условиями их местообитаний. Генетика приобретает в настоящее время огромное прикладное значение. Помимо уже давно применяемых методов улучшения пород домашних животных и сортов культурных растений с помощью искусственного мутагенеза, теперь начинают распространяться и приемы генной инженерии - целенаправленного изменения генов, вплоть до операций на генах и в целом воздействия на наследственную природу. С 1997 г. развернулись опыты по клонированию - генетическому копированию животных, в том числе из вегетативных клеток (ибо геном, т.е. набор генов организма, во всех клетках тождествен). Потенциально этот метод применим и к людям, но этические аспекты допустимости выведения “двойников” вызывают ожесточенные споры.

3.27 Цитология, биохимия, физико-химическая биология

По разнообразию своих уровней, от молекулярного до биосферного, с живой материей не может сравниться ни одна из других форм существования природы. Естественно, что мы не можем здесь подробно рассмотреть все эти уровни. Остановимся специально на одном из них, в известном смысле ключевом для понимания жизни на клеточном. Еще в классический период естествознания клетка была признана универсальной ячейкой всего живого. Сейчас так нельзя сказать безоговорочно, есть и доклеточные формы жизни (вирусы), и организмы с нетипичной (безъядерной) клеткой - прокариоты, например, бактерии и сине-зеленые водоросли. Но в целом всеобщая роль клетки с ее характерными структурами признается и сейчас. Именно клетка является той “ячейкой” организации, на уровне которой впервые в полной мере проявляются все свойства жизни как таковой: целостность, обмен со средой (открытость), целесообразное реагирование, сложность строения, способность к размножению.

Чтобы лучше понять современные представления о биологической клетке, полезно остановиться на некоторых сведениях из прошлого экспериментальных и описательных в биологии. Реальная эффективность экспериментального подхода в этой области проявилась почти одновременно с успехами эксперимента в физике (и раньше, чем в химии), а именно с 1628 г., когда У. Гарвей открыл кровообращение и определил его важные параметры (в частности, количество крови, выбрасываемое сердцем при каждом сокращении). В целом же для биологии XVII - первой половины XIX вв. характерно преобладание описательных исследований, развитию которых способствовало открытие огромного числа новых видов в эпоху великих географических открытий XVII в. и затем в ходе экспедиций XVIII - XIX вв., проникших в труднодоступные районы внутренней Африки, Сибири, Америки и других регионов.

Благодаря изобретению микроскопа в середине XVII в., перед учеными открылся мир микроорганизмов и клеточных, а затем и субклеточных структур. Клетка была описана английским натуралистом Р. Гуком (1635-1703) в 1665 г. в труде “Микрография”, но лишь в 1838-1839 гг. немецкий зоолог Т. Шванн оценил ее значение как основной ячейки строения организма, т.е. создал клеточную теорию - учение о том, что клетка представляет собой универсальную ячейку всех живых организмов. В основном эта теория сохраняет свое значение, хотя открыты и бесклеточные организмы - вирусы. Впрочем их не всегда признают за живые, поскольку они могут кристаллизироваться наподобие неживых объектов. Но им свойственны размножение делением и другие характерные свойства живого, о которых см. раздел 4.1.

3.28 Возникновение жизни на Земле

Наибольшее распространение получила гипотеза происхождения жизни, разработанная А.И. Опариным. Согласно этой гипотезе, первым этапом предбиологического процесса было перемещение тяжелых элементов к центру Земли, легких - на ее поверхность. Это происходило 5-4 млрд. лет назад, когда Земля была очень горячей. Атмосфера состояла из водорода и его соединений (воды, точнее, водяного пара; метана, аммиака, цианистого водорода и т.д.). В ней под действием излучения Солнца возникли сравнительно несложные органические вещества: сахара, аминокислоты, уксусная, молочная, муравьиная кислота и др. Этот процесс удается воспроизвести в лаборатории.

Затем абиогенным путем, в отсутствии свободного кислорода (он появился в атмосфере позднее, под действием зеленых растений) были синтезированы более сложные соединения, включая аденозинтрифосфат (АТФ) - богатое энергией соединение, впоследствии играющее центральную роль в энергетическом балансе организмов. В процессе охлаждения земли водяной пар превращался в воду, образовался “первичный бульон” - водный раствор аммиака, двуокиси углерода, метана и упомянутых более сложных органических соединений. В результате их полимеризации возникли линейные полимеры: полипептиды и полинуклеотиды. Последние способны к самокопированию почти так называемого комплементарного связывания их нуклеотидов (мономеров): аденина с урацилом, гуанина и уитозином. Этот процесс сам по себе идет очень медленно, но мог быть ускорен тем, что среди образовавшихся к тому времени полипептидов некоторые были катализаторами, т.е. могли, не расходясь сами, ускорять матричный синтез и урацила на аденине, цитозина на изанине. При этом путем отбора, т.е. отмирания нежизнеспособных комбинаций, сохранялись лишь “удачные” комбинации катализаторов и нуклеиновых кислот, т.е. (сначала РНК, затем более сложный ДНК), т.е. образовался генетический код. Так появились первые организмы (гетеротрофы, поскольку свободного кислорода еще не было, и прокариоты или даже еще более примитивные).

Однако главная и далеко еще не решенная проблема, связанная с появлением жизни и первых организмов, заключается в выяснении процессов, приведших к формированию генетического кода. Оно относится к древнейшим временам, видимо, еще к стадии химической эволюции, поскольку даже для прокариотной клетки, например, бактериальной, характерно наличие двойной спирали ДНК, правда, несколько более примитивного типа, чем у эукариотов. Бактерии, как и все клеточные организмы, содержат оба типа нуклеиновых кислот, ДНК и РНК, вирусы - только одну из них. Однако неизвестно, является ли простота вирусов первичной или вторичной. Во всяком случае, современные вирусы не могли существовать раньше клеточных организмов, ибо живут, только паразитируя на них.

Половой процесс возник на стадии прокариот; он имеется, например, у бактерий, хотя и не обязателен (существует наряду с простым делением). Во всяком случае наследственность и изменчивость представлены уже на самих ранних этапах происхождения жизни, причем в самом общем плане на основе тех же генетических механизмов, что и сейчас. Поэтому можно считать, что генетика является столь же универсальной по применимости биологической дисциплиной, как биохимия или биофизика.

Клетки, действительно возникшие, скорее всего, симбиогенным путем, (продолжали захватывать более мелкие аэробные клетки, которые, будучи богаты АТФ, эволюционировали, с одной стороны в митохондрии - энергетические центры клеток; с другой, в фотосинтезирующие хлоропласты) около 3 млрд. лет назад образовали многообразные скопления - колонии. По видимому, это были уже не стадии эукариотной жизни. В результате “разделения труда" между клетками колонии возникли многоклеточные организмы. Этот процесс знаменовал переход от древнейшей, архейской эры в истории Земли к протерозойской - “эре первичной жизни" (название достаточно условное, так как появлению многоклеточных предшествовала эволюция доклеточных и одноклеточных организмов в течение по меньшей мере одного - двух млрд. лет). Вплоть до палеозойской эры, около 1 млрд. лет назад, на Земле господствовали сравнительно примитивные животные (губки, кишечнополостные) и водоросли. В течение палеозойской эры, закончившейся около 200 млн. лет назад, растения постепенно усложнялись, вплоть до голосеменных, а из животных бурно развивались беспозвоночные (моллюски, гигантские ракоскорпионы, иглокожие - кембрийский период); затем - в силурийском периоде - осуществляется выход на сушу беспозвоночных, несколько позднее, в каменноугольном периоде - позвоночных. Первоначально это были земноводные (стегоцефалы), затем от них произошли уже более свободные от водной стихии, даже в своем размножении, пресмыкающиеся.

В течение мезозойской эры, приблизительно 200-100 млн. лет назад, шло иссушение климата Земли в связи с бурными горообразовательными процессами. Рептилии заняли господствующее положение и завоевали все среды обитания, вплоть до воздушной (летающие ящеры). Поздний мезой (меловой период) - время появления и стремительного распространения по всей суше известковых растений. Это также время появления млекопитающих, победивших рептилий в борьбе за существование благодаря ряду крупных эволюционных преобразований, открывших пути к дальнейшей эволюции (такие преобразования часто называют ароморфозами, в отличие от менее значительных, чисто приспособительных изменений - идиоадаптаций): благодаря более совершенной заботе о потомстве (внутриутробное развитие, вскармливание детенышей молоком), четырех камерному сердцу и полному разделению венозной и артериальной частей кровеносной системы, образованию волосяного покрова, совершенствованию коры головного мозга, преобладанию условных рефлексов над безусловными, что обеспечило более гибкое приспособление к среде.

Общей базой всех этих эволюционных процессов был естественный отбор. За мезозойской эрой последовала кайнозойская, важнейшим событием в ходе которой была с точки зрения эволюции смена естественного отбора, как доминирующего механизма эволюции, более сложными, социальными механизмами. Речь идет о возникновении человека, т.е. об антропогенезе.

3.29 Проблема возникновения и эволюции человека

Происхождение человека также входит со времен Дарвина в круг проблем, изучаемых теорией эволюции. В настоящее время наиболее вероятной признается концепция, согласно которой предки человека - рамапитеки отделились от человекообразных обезьян в миоцене, т.е.12-15 миллионов лет назад. Фрагменты челюстей рамапитеков находят в Индии, Кении и даже в Европе (Венгрия). Потомками рамапитеков был прямоходящий и изготовлявший каменные орудия Homo habilis (“человек умелый”), а также близкие к нему виды, жившие 3,5-2 млн. лет назад. Их остатки найдены в 1960-1970-х гг. в Танзании и Кении. Ближе к нам питекантропы и синантропы, жившие несколько сотен тысяч лет назад. Они уже употребляли огонь. Еще ближе к нам, появившиеся около 200 тысяч лет назад и создавшие элементы цивилизации (жилища, религия) неандертальцы. Наконец, человек современного вида - кроманьонец - появился на Земле около 80 тысяч лет назад. Движущими факторами антропогенеза (так называют процесс историко-эволюционного формирования человека) явились естественный отбор и мутации, в сочетании с позднейшими факторами: речью, трудом, социальностью.

3.30 Исследования поведения животных и человека

Важным направлением современной биологии, во многом смыкающимся с такими областями гуманитарного знания, как психология, социология, социальная психология и др., является также исследование поведения животных и человека. В биологическом плане это направление основывается на достижениях физиологии. Что касается изучения поведения человека и высших животных (млекопитающих), здесь основополагающим продолжает оставаться изучение условных рефлексов, открытых И.П. Павловым. Вместе с тем значительное развитие получили концепции “социальности" поведения животных, изучение явлений иерархии и доминирования в группах, коммуникации и т.д. Любопытным открытием явилось явление импринтинга - процесса на ранних этапах онтогенеза, в ходе которого животные научаются определенным действиям и связывают их с тем, кто осуществлял научение (или даже просто присутствовал при этом).К. Лоренц обнаружил, что если, учась передвигаться по суше, утята видели его, а не собственную мать-утку, то потом следовали за ним так же, как должны были бы следовать за матерью. Важным направлением развития науки на грани биологии и общественных наук является исследование группового поведения, иногда обозначаемое как социобиология. С ее помощью в группах приматов и других животных обнаружены такие явления, как иерархия, забота о слабых, сложные формы коммуникации.

3.31 Междисциплинарный характер современной биологии

В течение XIX столетия и особенно в XX в. (очевидно, эта тенденция сохранится и в XXI столетии) биологическое исследование все в большей мере приобретает междисциплинарный характер. Математика, физика, химия вошли в биологическое исследование как методы и компоненты. Физическая химия и химическая биофизика особенно важны в этом контексте. “Без преувеличения можно сказать, что именно современная физико-химическая биология как бы в единый комплекс объединила биологические дисциплины, которые ранее по объективному признаку считались самостоятельными. Сказанное относится не только к экспериментальным наукам, развитие которых всецело определяется характером и уровнем используемых ими физико-химических методов. Этими же методами пользуется сегодня … традиционная биология. Например, цитология и морфология издавна оценивались как описательные науки, а биохимия - как типично экспериментальная, имеющая независимый путь развития и накапливающая собственный багаж знаний. Какую же роль в судьбе этих наук сыграла физико-химическая биология?

Электронно-микроскопическая цитология воедино слилась с биохимией. Она “заговорила" на языке биохимии, а биохимия обрела новую роль: она стала топографической (от греч. topos - место, местность + grapho - пищу) биохимией клетки и получила возможность “вписать” процессы обмена веществ в общую картину цитологических структур. Появилась реальная возможность совместить субмикроскопическую и молекулярную системы клетки с функциями составляющих эти системы компонентов. Осуществилась давняя мечта биологов об объединении знаний о структуре и функциях организма в целом. Прямым следствием этого оказалось то, что традиционное разделение биологии на науки о строении - цитологию, гистологию, анатомию, морфологию - и науки, исследующие физиолого-биохимические процессы - физиологию и биохимию - в значительной мере утратило свой первоначальный смысл.

Таким образом, в биологии второй половины XX в. явственно обозначилась двойственная тенденция в ее развитии. С одной стороны, объективная и дисциплинарная специализация вследствие вычленения и конкретизации все новых объектов, требующих и особых подходов к их изучению. С другой стороны, происходит объективно-методическая интеграция биологических наук: проявляется тенденция к формированию как бы единого фронта наук, выявить границы между которыми становится все труднее" [1].

3.32 Взаимосвязь человека и природы

В наше время человеческая деятельность все более активно вторгается в природу, создавая на поверхности Земли практически современно новую экологическую среду. Соответственно в экологии и географии все большее место занимают исследования, так или иначе связанные с анализом последствий деятельности человека. Можно отметить направления, ориентированные на изучение культурных ландшафтов, антропогенных черт окружающей среды, результатов хозяйственной деятельности человека. На грани между биологией и физической географией возникла междисциплинарная область исследований - экология, изучающая динамику популяций и их приспособленности к среде, эффекты от воздействия человека на природу, процессы взаимодействия человека и природы. Важнейшими для экологии понятиями стали введенные в тридцатых годах понятия экосистемы (совокупность совместно обитающих животных и растений и их абиотической, т.е. неживой среды; понятие введено А. Тэнсли в 1935 г.) и биогеоценоза (единство организмов, населяющих определенный участок земли, и его ландшафтных, водных и почвенных условиями; понятие введено В.Н. Сукачевым в 1936 г.). Оба понятия характеризуют биогеоценотический уровень организации (см.2.3.). Различие между ними лежит в том оттенке, что в понятие биогеоценоза делается ударение на единстве организмов с их средой, в то время как “экосистема”, напротив, констатирует совместное наличие организмов и среды; и еще в том, что Сукачев подчеркивает такой компонент среды, как почву.

Страницы: 1, 2, 3, 4, 5, 6, 7


на тему рефераты
НОВОСТИ на тему рефераты
на тему рефераты
ВХОД на тему рефераты
Логин:
Пароль:
регистрация
забыли пароль?

на тему рефераты    
на тему рефераты
ТЕГИ на тему рефераты

Рефераты бесплатно, реферат бесплатно, курсовые работы, реферат, доклады, рефераты, рефераты скачать, рефераты на тему, сочинения, курсовые, дипломы, научные работы и многое другое.


Copyright © 2012 г.
При использовании материалов - ссылка на сайт обязательна.