на тему рефераты
 
Главная | Карта сайта
на тему рефераты
РАЗДЕЛЫ

на тему рефераты
ПАРТНЕРЫ

на тему рефераты
АЛФАВИТ
... А Б В Г Д Е Ж З И К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я

на тему рефераты
ПОИСК
Введите фамилию автора:


Дипломная работа: История системного подхода в науке и технике


Открытие античастиц явилолсь одним из примеров введения постклассическим естествознанием правил, не могущих быть понятыми или интерпретированными в рамках классической физики.

За последние десятилетия был открыт (точнее, вычислен, предположен на основе убедительных математических соображений) еще целый ряд “виртуальных”, существующих по-видимому, но не обнаруживаемых в эксперименте частиц, для которых не выполняются обычные соотношения между массой, импульсом и энергией. С другой стороны, много непривычных свойств (например, дробность электрического заряда и т.д.) постулировано для таких ненаблюдаемых, но необходимых для обоснования многих процессов в микромире, как кварки и актикварки (см.2.4.1). В особую категорию выделены, начиная с 1950-х годов (работы Э. Ферми) короткоживущие возбужденные состояния адронов - “резонансы”. В конечном счете нет уверенности, что известные сейчас элементарные частицы являются подлинно элементарными в смысле неразложимости. Однако существенно, в частности в плане концепции корпускулярно-волнового дуализма (см.2.4.2), что каждой частице ставится в соответствие определенный вид поля. Из всех элементарных частиц выделяется группа частиц, возможно, “элементарных" в полном смысле слова, которые определяют всю специфику процессов в микромире. Это кварки и лептоны (частицы со спином 1/2); бозоны, фотоны, глюоны - частицы, “склеивающие” кварки в нуклоне (спин 1/2); а также гипотетические гравитоны.

В настоящее время решается задача объяснить на основе известных и предполагаемых свойств элементарных частиц важнейшее свойство атома - его устойчивости в течение огромных промежутков времени. В первом приближении объяснение этого было достигнуто уже Планком с помощью его гипотезы об элементарном кванте действия (синоним: постоянная Планка, см.2.4.1). Как писал Н. Бор, “… только существование кванта действия препятствует слиянию электронов с ядром в нейтральную тяжелую частицу, практически бесконечно малого размера. Признание такого положения тотчас же навело на мысль описывать удержание каждого электрона полем вокруг ядра как непрерывный ряд индивидуальных процессов, которые переводят атом из одного из так называемых его стационарных состояний в другое такое же состояние с испусканием освобождаемой энергии в виде единичного кванта электромагнитного излучения … Основное предположение об индивидуальности атомных процессов означало в то же время отказ от установления детальной причинной связи между физическими событиями, существование которой было в течение столетий бесспорной основой философии естествознания” (цит. по: В.И. Кузнецов и др., 1996, с.138). В самом деле, учение о жесткой детерминированности благодаря квантовой механике и другим отраслям постклассической физики все больше уступает место принципу неопределенности, а также статистическому и другим более гибким подходам. И в первую очередь этот сдвиг в подходе реализовался благодаря исследованиям мира элементарных частиц.

Интенсивное развитие физики микромира привело к выделению в качестве особой дисциплины ядерной физики

Теория относительности, хотя в принципе и универсальная по своему применению, все же находит приложение и проверку чаще всего на мегауровне, в связи с явлениями масштаба Галактики и Метагалактики (см. ниже). Напротив, квантовая механика исследует прежде всего явления, развертывающиеся на уровне элементарных частиц и вообще индивидуальных микрочастиц. Более приближенные к человеческому уровню восприятия системы, системы мезоуровня продолжают изучаться с одной стороны, средствами классической ньютоновской механики, а с другой, статистически. Примером глубокого проникновения статистических методов в современное естествознание может служить термодинамика. Третье из ее основных начал, принцип недостижимости абсолютного нуля, было установлено В.Ф.Г. Нернстом в 1906 г., в то время как два остальных начала термодинамики - закон сохранения энергии и принцип неубывания энтропии, т.е. меры вероятности состояния системы (микросистема может без внешних влияний переходить лишь от менее к более вероятным состояниям: от порядка к беспорядку, от определенной температуры к более низкой и т.д.), были известны ранее. Из второго начала делался вывод, что мировой процесс должен привести к максимизации энтропии и “тепловой смерти” Вселенной. Однако ОТО показала, что энтропия космических терподинамических систем может сколь угодно долго возрастать без достижения ими равновесного состояния с максимальным значением энтропии. По крайней мере в этом отношении постклассическое естествознание внесло ноту оптимизма в научное миросозерцание, поскольку вопрос о тепловой смерти перестал быть актуальной темой мировоззренческих дискуссий.

3.13 Физика и космология

Современные астрономия и космология перестали быть сочетанием чисто наблюдательного и умозрительного подхода, как это имело место до конца XIX в., и стали дисциплинами, опирающимися на точное физическое знание, в особенности на теорию относительности и квантовую механику

Классическое естествознание рассматривало Вселенную как стационарную систему, которая всегда была более или менее такой, как сейчас. Это допущение отражало более общие постулаты об однородности и абсолютности пространства и времени, отвергнутые, как мы видели, теорией относительности. На базе ОТО советский физик и математик А.А. Фридман (1888-1925) в 1922 г. теоретически предсказал, что вселенная может расширяться и сужаться. Согласно уравнениям Фридмана, существуют разные возможности: если средняя плотность вещества Вселенной равна или меньше некоторой критической величины, Вселенная неограниченно расширяется (видимо, эта возможность на данном этапе и соответствует реальности, что подтверждается методами спектроскопии: в спектрах галактик красные линии смещены таким образом, что создают картину удаления галактик от нас во все стороны со скоростью, пропорциональной квадрату расстояния. Это “красное смещение”, поразительным образом подтвердившее гипотезу Фридмана, было открыто через несколько лет после опубликования его работы). Если же плотность больше критической, Вселенная сжимается. При модели расширяющейся Вселенной, Вселенная первоначально имела точечный вид как бы шарика размером подобного электрону, а плотность ее была около 10100 г/см3. Температура ее была трудно представима, порядка миллиона миллионов градусов. После первичного так называемого Большого взрыва размер Вселенной стал увеличиваться, а температура - снижаться, пока тот и другая не достигли величин, о которых мы можем более или менее непосредственно судить, поскольку от них осталось нечто доступное измерению, а именно реликтовое радиоизлучение - излучение сохранившихся в межзвездных пространствах скоплений водородно-гелиевой плазмы, которые остались неизменными со времени до образования звезд. Все величины, относящиеся к более раннему периоду, получены путем простой экстраполяции более поздних процессов на самые ранние этапы образования Вселенной и потому не столь достоверны и уже неоднократно пересматривались. В частности, удаленность от нас Большого взрыва принималась равной 4-5 миллиардов лет, сейчас - 20-25 миллиардов лет, но и эти цифры не окончательны.

В период, от которого осталось реликтовое радиоизлучение, т.е. приблизительно 3-4 миллиарда лет тому назад, Вселенная состояла из более или менее однородной смеси водорода с гелием, со сравнительно “низкой" температурой - 4-5 тысяч градусов. Позднейшая сверхвысокая температура в недрах звезд возникла вторично в результате, скорее всего, термоядерных реакций. Радиус Вселенной в эпоху формирования реликтового излучения составлял около 15 миллионов световых лет.

3.14 Концепции современной химии и их формирование в ходе великих химических открытий

Вплоть до XVIII столетия в химии удерживались чисто умозрительные представления о том, что вещество состоит из “стихий" типа постулированных еще средневековыми алхимиками “ртути”, “серы" и др. или из “начал” наподобие невесомого “теплорода” (“флогистона”), якобы служащего причиной теплоты. Однако уже в 1660-х годах английский ученый Р. Бойль (1627-1691) ввел научное определение химического элемента как простого тела, которое не может быть получено из других тел и веществ. Он ввел в химию экспериментальный метод и измерение, положил начало исследованию закономерностей связи между объемом и давлением газов. Однако лишь в XVIII в. химия стала приобретать характер науки, основанной на выявлении системы объективных закономерностей. Впрочем, этому продолжало мешать господство концепции флогистона и недостаточность надежных количественных данных.


3.15 Закон сохранения массы Ломоносова

Выступив против концепции флогистона, Ломоносов пришел к гораздо более правдоподобному предположению, что теплота обусловлена вращательными движениями “корпускул”. Он выдвинул ставшую впоследствии известной формулировку закона сохранения массы: “Все перемены, в натуре случающиеся, такова суть состояния, что сколько у одного тела отнимется, столько присовокупится к другому”. Если Бойль еще доказывал существование флогистона тем, что металл после прокалывания увеличивает свой вес, то Ломоносов в 1756 г. опроверг эти опыты (точнее, их ложную трактовку Бойлем) тем, что при прокалывании без доступа воздуха прибавки веса не получается. Этот факт был подтвержден в 1774 г. французским химиком А.Л. Лавуазье (1743-1794), показавшего затем, что прибавка веса является результатом присоединения особого элемента - кислорода.

3.16 Закон постоянства состава веществ Пруста

Для развития химии необходима была фиксация предмета этой науки как чего-то характеризуемого постоянными и устойчивыми признаками. В этом отношении важнейшую роль сыграли работы французского химика Ж.Л. Пруста (1754-1826). Исследовав состав многочисленных хлоридов, сульфидов, а также окислив металлов, он на рубеже XVIII и XIX вв. открыл закон постоянства химических соединений, гласящий, что каждое химическое соединение, независимо от способа, каким оно было получено, состоит из одних и тех же элементов, притом стоящих друг к другу в одних и тех же весовых отношениях. Без этого закона не удалось бы подвести базу под классическое атомно-молекулярное учение (см.1.3.4 и 1.3.5).


3.17 Закон эквивалентов Рихтера

Немецкий химик И.В. Рихтер (1762-1807) стремился отыскать в химических реакциях математические закономерности. В 1793 г. ему удалось показать, что в любой реакции, ведущей к образованию определенного соединения, элементы взаимодействуют в строго определенных пропорциях. Эти пропорции получили впоследствии название эквивалентов, а закон эквивалентов нашел выражение в виде таблиц, ставших основой количественного описания всех известных тогда реакций. Закон эквивалентов Рихтера стал одной из предпосылок химической атомистики.

3.18 Закон кратных отношений Дальтона

Первые определения атомных весов элементов были выполнены в первые годы XIX в. английским химиком и физиком Дж. Дальтоном (1766-1844). Обоснованием химической атомистики послужил также его закон кратных отношений для случая, когда два химических элемента образуют друг с другом несколько соединений: весовые количества одного из элементов, поделенные на таковые другого, относятся между собой, как простые целые числа.

На основании своего закона кратных отношений, а также закона постоянства состава Пруста Дальтон в 1803-1804 гг. выдвинул свою теорию атомного строения (химическую атомистику). Благодаря этой теории представления об атоме как носителе химических свойств впервые начали приобретать конкретный характер.


3.19 Закон Авогадро о постоянстве количества молекул в данном объеме

Отправляясь от атомистики Дальтона, итальянский физик и химик А. Авогадро (1776-1856) сформулировал в 1811 г. теорию молекулярного строения вещества. Он разработал метод определения молекулярных масс и с его помощью вычислил в течение 1810-х годов атомные массы кислорода, углерода и многих других элементов, а также открыл закон, согласно которому в одинаковых объемах газов содержится одинаковое количество молекул (при одной и той же температуре и давлении). Он уже в определенном смысле явился предшественником Д.И. Менделеева: так, Авогадро первым установил серию элементов, которые впоследствии вошли в периодическую систему как группа (точнее, главная подгруппа пятой группы. Это были азот, фосфор, мышьяк и сурьма, аналогию в свойствах которых Авогадро подметил).

3.20 Периодический закон и периодическая система химических элементов Менделеева

Перечисленные открытия заложили основу для атомно-молекулярной теории строения вещества, которая получила законченный вид в 1860-х годах, когда А.М. Бутлеров (1828-1886) создал теорию химического строения, а Д.И. Менделеев (1834-1907) - свою систему элементов. Последняя не только представляла собой классификацию элементов по объективным критериям, но и дала новый пример предсказательной силы науки: на основании своей системы Менделеев получил возможность предсказывать открытие новых элементов. Так, им заранее были установлены свойства скандия, германия, галия, эмпирически открытых лишь впоследствии.

Периодическая система Менделеева представляет собой развернутую форму его же периодического закона, первое четкое изложение которого было дано Менделеевым в феврале 1869 г. Сущность этого закона в трактовке самого Менделеева заключается в том, что физические и химические свойства элементов стоят в периодической зависимости от их атомного веса. В современном понимании эта трактовка должна быть уточнена: свойства элементов зависят не столько от атомного веса, сколько от заряда ядра и определяемого этим зарядом числа электронов в атоме, которое равно порядковому номеру в системе Менделеева. Но в целом Менделеев был прав, называя свою таблицу естественной системой элементов. Она впервые отразила объективное распространение всех известных тогда элементов соответственно их свойствам, причем среди этих свойств выделена одно первичное (атомный вес, мы бы сейчас сказали - заряд ядра) и многочисленные зависимые от него вторичные.

Уже из планетарной модели атома Резерфорда и из факта нейтральности (нулевого заряда) атома в целом вытекло, что положительный заряд ядра является кратным отрицательного заряда электрона. На основе этого соотношения и была в 1913 г. выдвинута гипотеза, впоследствии оправдавшаяся, что число электронов в атоме равно порядковому номеру соответствующего элемента. После усовершенствования резерфордовской планетарной модели Бором выяснилась причина периодичности в таблице Менделеева. Это также был один из примеров преемственности между классическим и постклассическим состоянием науки. Согласно модели Бора, электроны движутся вокруг ядра лишь по “разрешенным” стационарным орбитам. Элементы с одним, двум и т.д. электронами в наружном слое, наиболее определяющем физические и химические свойства элемента, в целом повторяют свойства элементов с одним, двумя и т.д. электронами в наружном слое, но имеющих притом на один или несколько слоев (разрешенных орбит) электронов меньше.


3.21 Особенности постклассической химии

Современная (постклассическая) химия, продолжая оставаться наукой о превращениях и свойствах веществ, проявляющихся при трансформации их структуры на атомно-молекулярном уровне, приобрела в то же время новые особенности по сравнению с классическим периодом. Прежде всего, как сказано, она опирается на квантовую механику и учение о строении атома. Под этим углом зрения переосмысливаются все классические понятия. Например, валентность по-прежнему трактуется как количественная мера способности элемента к образованию химических связей, но в XX в. связи эти трактуются как электростатические силы, причем выяснилось, что упомянутая способность образовывать связи зависит от характера внешней (валентной) оболочки атомов (см.1.3.6). Конечно, для этого необходимы были по меньшей мере открытие электрона и боровская планетарная модель атома.

Еще недавно не имели применения, да почти что и не были известны изотопы - разновидности одного и того же химического элемента, имеющие один номер в периодической таблице, но отличающиеся друг от друга по атомной массе. Порядковый номер (число протонов в ядре) у изотопов одного и того ж элемента одинаков, но имеются добавочные или недостающие нейтроны, так что атомная масса получается неодинаковая. Первые изотопы были получены в процессе радиоактивного распада урана и тория в 1906-1907 гг., что явилось важным компонентов происходившей тогда тотальной перестройки естественнонаучных концепций. Оказалось, что порядковый номер элемента в менделеевской таблице является значительно более сложным показателем, чем полагали ранее, и под ним могут скрываться разновидности этого элемента с неодинаковыми свойствами, хотя и с одним зарядом ядра (конечно, такие формулировки смогли появиться только после принятия планетарной модели атома, каковая и была предложена в 1911 г.Э. Резерфордом, хотя еще и в несовершенной форме по сравнению с раннеквантовой моделью Бора, см.2.1.). Вскоре изотопы были открыты и у стабильных элементов, раньше всего у неона, а в 1934 г.И. Кюри и Ф. Жолио получили изотопы искусственным путем (а именно, отсутствующие в природе радиоактивные изотопы азота 12N, кремния 28S; и фосфора 30Р - слева вверху стали писать массовое число изотопа). Затем путем ядерных реакций синтезировали еще много изотопов, в основном радиоактивных.

3.22 Эволюционная химия

Широко распространилась за последние годы и представляет уже отчасти переход к биологии концепция эволюционной химии, основанная на введении в химию идеи саморазвития путем восхождения на более высокие уровни сложности и упорядоченности. Эволюция понимается в данном случае как спонтанный - в природе или специально подобранных (чтобы сделать минимальным участие человека) условиях - синтез новых химических соединений, являющихся более сложными по сравнению с исходными материалами. Сюда же примыкает моделирование каталитических систем, к которому мы вернемся в связи с проблемами биологии. Для химического же уровня организации несомненно, что раннему этапу возникновения жизни предшествовали сложные молекулярные процессы, которые можно отнести к категории химической эволюции и без которых жизнь не возникла бы.

На этом этапе в атмосфере Земли взаимодействовали сначала очень простые углеродосодержащие и безуглеродные вещества (вода, углекислый газ, аммиак, сероводород, цианистый водород, фосфорная кислота и т.д.), затем получившиеся из них малые биомолекулы (мономеры: сахара, аминокислоты, пурины, пиримидины, моносахариды и т.п.), затем сложные органические вещества и биополимеры (липиды, полисахариды, белки, нуклеотиды и др.) - и это уже была преджизнь, переход к живому веществу. Механизмы этого процесса перехода во многом неясны и представляют собой одну из тех наиболее увлекательных областей исследования, которые обещают обогатить естествознание новыми и углубленными концепциями. Для них отчасти уже готовы наименования: теория самоорганизации, биогенез, синергетика и т.д. Однако мы еще далеки от редукции реальных эволюционных и биологических процессов к химической основе, если такая редукция вообще возможна.

Редукцию химических концепций и в целом химического уровня организации к физическому можно считать практически состоявшейся, как можно видеть, в частности, на примере валентности, периодического закона Менделеева (см. выше) и многих других концепций и категорий. Редукция биологического уровня к химическому, видимо, представляет собой гораздо более трудную задачу, нежели редукция химического уровня к физическому. Многие применяемые в биологии понятия не имеют аналогии на низших уровнях организации. Таковы понятия органа, стимула, пола, инстинкта и др. Тем не менее во все возрастающей степени в биологии используется концептуальный аппарат физики и химии, а потому концепции современной биологии необходимо рассматривать как в их специфике, так и в контексте физических и химических данных и категорий.

3.23 Биологические явления. Формы и уровни жизни

Многообразие имеющихся на Земле живых систем поразительноЧасти организмов (клетки, ткани, органы), далее сами организмы, популяции, нередко рассматриваются в виде особых, всевозрастающих в отношении сложности объектов - уровней организации. “Лестница" этих уровней представляет собой часть более общей шкалы повышения организации в природе, начиная от атомов и молекул и кончая человеком, человеческим обществом и ноосферой (см. ниже).

В плане построения четкой картины многоуровневости живой природы в настоящее время наиболее адекватным представляется выделение следующих уровней: (1) молекулярного, составляющего предмет молекулярной биологии; (2) субклеточного - органелл и других внутриклеточных структур; (3) клеточного; (4) тканевого; (5) органного; (6) организменного; (7) популяционного - как сказано, ключевого с точки зрения СТЭ; (8) видового (сюда же примыкают уровни более высоких систематических единиц: рода, семейства, класса и т.д.); (9) биогеоценотического и (10) биосферного. Два последних уровня включают в себя не только организмы, но и участки земной поверхности и вообще местообитания организмов и будут рассмотрены ниже.

3.24 Специфика феномена жизни

Отличительные особенности живых существ заключаются, во-первых, в их составе, во-вторых, в строении и функциях. По составу они относятся к тому региону материального бытия, в основе которого лежат органические соединения. Какие именно, есть разные мнения. Раньше считали, что в основе жизни лежат белки; однако сейчас представляется более вероятным (как мы увидим ниже, при изучении генетических концепций), что еще важнее нуклеиновые кислоты - биополимеры построенные из нуклеотидов (азотистых оснований - пуриновых и пиримидиновых), углеводов и остатка фосфорной кислоты и лежащие в основе процессов хранения и передачи негенетической информации, т.е. информации, передающейся от одного поколения организмов к другому. Белки важны в осуществлении самых разнообразных функций в течение онтогенеза. Но при передаче признаков по наследству, а значит, и при филогенезе их роль сравнительно с нуклеиновыми кислотами пассивна, она лишь реализует программу, заложенную в последних. Теоретически возможны, например, на других планетах, и формы жизни, основанные на каких-либо других соединениях, например, не углеродных, а кремниевых. Сейчас для описания феномена жизни в наиболее общем виде берут за основу чаще всего не состав, а функции и структуру живых объектов как систем.

Под этим углом зрения первостепенными для определения некоторой системы как живого организма являются ее целостность; далее, уже упомянутый факт онтогенеза (согласно теории эволюции, также и филогенеза - исторического, т.е. в геологическом времени, формирование видов, родов, классов и других систематических групп организмов); обмен веществ и энергии с окружающей средой; способность целесообразно реагировать на ее изменения; сложность (высокоупорядоченность) строения; размножение. Взятые порознь, все эти аспекты специфики живого не являются абсолютными. Так, в определенной мере целостность характерна уже для кристаллов; в процессе кристаллизации в растворах, когда около “зародышевых” центров в течение определенного времени образуются “взрослые" кристаллы, с основанием можно видеть нечто подобное онтогенезу, т.е. индивидуальному развитию. Видимо, этот процесс в каких-то формах, возможно, напоминающих современные вирусы, также и исторически предшествовал появлению типичной жизни. Обмен веществ и энергии (иногда в том же смысле, т.е. как осуществляющих этот обмен, говорят о живых системах как открытых) тоже не столь уникальный случай: открытых систем и вне жизни много (например, газовые оболочки гигантских планет, где нет жизни, но идут потоки вещества и энергии к поверхности планеты и в космос). Вообще неорганические (“косные”) системы весьма нередко обмениваются (хотя бы в элементарной форме) веществом и энергией со своей средой и реагируют на ее изменения, и если это реагирование трудно определить как “целесообразное”, то по крайней мере есть системы, определенным образом “направленные" на поддержание своего равновесия: например, смесь уксусной кислоты с ее же натриевой солью или вообще буферные растворы, сохраняющие в известных рамках при добавлении воды, кислот или оснований на одном и том же уровне свою важнейшую характеристику - кислотность.

Страницы: 1, 2, 3, 4, 5, 6, 7


на тему рефераты
НОВОСТИ на тему рефераты
на тему рефераты
ВХОД на тему рефераты
Логин:
Пароль:
регистрация
забыли пароль?

на тему рефераты    
на тему рефераты
ТЕГИ на тему рефераты

Рефераты бесплатно, реферат бесплатно, курсовые работы, реферат, доклады, рефераты, рефераты скачать, рефераты на тему, сочинения, курсовые, дипломы, научные работы и многое другое.


Copyright © 2012 г.
При использовании материалов - ссылка на сайт обязательна.