на тему рефераты
 
Главная | Карта сайта
на тему рефераты
РАЗДЕЛЫ

на тему рефераты
ПАРТНЕРЫ

на тему рефераты
АЛФАВИТ
... А Б В Г Д Е Ж З И К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я

на тему рефераты
ПОИСК
Введите фамилию автора:


Реферат: Гаметоциды и их применение в селекции


Основная аккумуляция PlHiK в спорогенной ткани проис­ходит в течение мейотической профазы, включая стадию па-хитены материнской клетки пыльцы. В тканях тапетума на­копление РНК приходится на тот же период (профаза—зи-12


готена—пахитена) [98]. Таким образом, сразу после синтеза ДНК на ранних этапах спорогенеза до митоза в микроспо-пах продуцируется РНК спорогенной ткани, причем 75% при­годится на рибосомальную РНК — на формы 16S и 28S. Ак­кумулирование форм p:PHiK 4S и 5S осуществляется иначе, чем основных форм pPlHK, и пик их аккумуляций наблюдает­ся в конце интерфазы микроспор [112].

В пыльцевом зерне основной синтез PHiK, ДНК и белка происходит на более поздней стадии — после митоза в мик­роспорах. .В цитоплазме пыльцевого зерна синтез всех форм РНК полиостью прекращается в последние 48 ч формирова­ния пыльцы [94]. Биосинтез нуклеиновых кислот и процессы, связанные с их обменом, претерпевают определенные измене­ния под влиянием соединений с гаметощидными свойствами.

Установлено, что у фертильных соцветий кукурузы интен­сивный синтез ДНК осуществляется на ранних этапах мик-роспорогенеза, но по мере завершения формирования пыль­цы наступает торможение синтетических процессов [20]. При обработке растений гаметоцидами (0,15%-ным раствором три-атаноламиновой соли ГМК или 0,8%-ным раствором натри­евой соли сф-дихлоризомасляной кислоты (FW-450), комби­нированно 0,8%-ным раствором FW-450 и 0,1%-ным раство­ром гнббереллина) содержание ДНК на всех этапах форми­рования пыльцы несколько увеличилось независимо от при­меняемого гаметоцида. Это объясняется торможением кле­точного растяжения под влиянием обработки гаметоцидами, в результате чего уменьшаются размеры клеток в спороген­ной ткани и пересчет на взятую навеску дает завышенное со­держание ДНК, не связанное с процессами аккумуляции нук­леиновых кислот [34].

Комбинированная обработка с гиббереллином (FW-450 + +гиббереллин) вызывает качественные изменения в молеку­лах ДНК, что приводит к нарушениям митозов и деградации ядра. Отмечено, что растворы ГМК и FW-450 по-разному влияют на интенсивность биосинтеза РНК в мужских репро­дуктивных органах кукурузы [26]. Параллельно было уста­новлено, что формы проявления стерильности (морфологиче-ские_йзменения) находились в зависимости от применяемого вещества. Применение ГМК на кукурузе вызывало торможе­ние образования РНК, и гаметоцид выступал здесь как ин­гибитор синтеза РН.К, обусловливая торможение клеточного удлинения. Морфологически это выражалось в уменьшении размеров соцветий, отсутствии в большинстве случаев колос­ков на латеральных веточках и в редукции листьев. Споро-генные ткани или совсем не формировали пыльцы, или она была нежизнеспособна. Действие FW-450 при данной концен-

13


трации'не вызывала значительных изменений в синтезе ДНК и PiHK, процессы спорогенеза у кукурузы протекали нормаль­но [20, 26].

У фертильных растений высокое содержание PiHIK отмече­но на более ранних этапах формирования пыльцы я дальней­ший синтез РНК осуществлялся более активно [94, 98, 137].

Специфичность действия гаметоцида обусловлена раз­личными факторам.и: близостью его химических характери­стик к аналогам синтетических пулов клетки; возможностью энэиматического преобразования в клеточной системе в суб­страт-подобный продукт ил;и в активный промежуточный ме­таболит определенных энздматических систем; наличием гор­мональных свойств или конформационного подобия с моле­кулами индукторов 'или репрессоров. Воздействие препаратов с гаметоцидными свойствами связано с физико-химическими характеристиками соединений (высокая электрофильность, способность к хелатированию и т. д.), в результате которых могут изменяться р1Н клетки и 'ионная сила в критические стадии развития спорогенной ткани [82].

Исследования влияния этрела на мейотические процессы в спорогенной ткани пыльников пшеницы Triticum aestivum L. показали, что индукция мужской стерильности связана с рас­падом этрела в растительных тканях с выделением этилена, молекулы которого обладают гормональными свойствами [47, 97]. Предполагают, что этилен, как и многие гормоны, влияет на функциональное состояние мембран, изменяя ак­тивность РНК полимеразы. Таким образом он может воздей­ствовать на процессы транскрипции, особенно участков ДНК, ответственных за синтез долгоживущих мРНК, транскриби­рующихся до мейоза, но необходимых для нормального тече­ния мейотических процессов[58, 98].

'В результате возможных нарушений в синтезе различных форм PlHiK при включении гаметоцида в метаболизм клетки неизбежно возникают анормальности в синтезе белка. В нор­мально развивающейся спорогенной ткани и в микроспорах активный синтез белка приходится на раннюю мейотическую профазу, его активность несколько снижается в зиготене — пахитене и совсем незначительна в период формирования тетрад [101]. Тапетум как ткань проявляет очень высокую ме­таболическую активность в течение всего периода микроспо-рогенеза вплоть до полного автолиза, поэтому отводить тапе-туму только секреторную роль — значит ограничить его мно­гообразные физиологические функции [108]. Отмечено, что пул ДНК тапетума недостаточен, чтобы служить источником для формирующихся микроспор [98]. Возможно, тапетум снаб­жает микроспоры растворимыми ДНК предшественниками,

14


как это было показано с экзогенно добавленным меченым ти-мидином, который быстро проникал в ткани тапетума и вклю­чался в ДНК микроспор [72]. Наиболее вероятно, что синтез РНК в тапетуме и микроспорах материнской клетки пыльцы независим. Однако это не исключает, что тапетум, особенно в ранний период формирования микроспор, частично постав­ляет предшественников РНК в спорогенную ткань [94]. В та­петуме имеется довольно большой рибосомальный пул, кото­рый, по-видимому, полностью деградирует вместе с ним или может поставлять предшественников РНК для последнего периода синтеза РНК в развивающихся спорах [101].

Роль тапетума в белковом синтезе может быть объяснена с точки зрения синтеза специфических энзимов, связаннь1х с мейозом или другими процессами в спорогенной ткани. До­пустимо участие тапетума и в распределении белкового ре­зерва. Высокая пропорция piPHK в его тканях свидетельст­вует о синтезе белков de novo, часть ,из которьгх откладыва­ется как запасные в микроспорак [28, 137]. Обработка гаме­тоцидными препаратами вызывает репрессию синтетических процессов белка в результате вмешательства этих физиоло­гически активных веществ во взаимосвязь процессов ДНК— РНК—белок [13, 19,29, 30, 104, 120]. Выяснение сущности про­цессов индукции мужской стерильности лежит в этой обла­сти. Эффект ГМК на ростовые процессы посредством дейст­вия ингибитора на обмен нуклеиновых кислот — эксперимен­тально установленный факт [29]. Значительное влияние ока­зывает ГМК на рибосомальную фракцию РНК путем изме­нений в процессах биосинтеза ДНК [19]. Возможно, что спе­цифичность действия ГМК проявляется на уровне репрессии синтеза биокаталитически активных белков именно той фрак­ции, которая ответственна за синтез и распад ДНК. При воз­действии ГМК наступает уменьшение фосфорелированных богатых лизином гистоновых фракций, количество которых в активноделящихся клетках при нормальных физиологических условиях значительно выше. Такое изменение в соотношении гистоновых фракций оказывает влияние на матричную актив­ность ДНК, что приводит к нарушению мейотического цикла. Не исключено, что изменение соотношения форм гистонов под влиянием ГМК создает условия для атаки и расщепления ДНК'азой доступных участков ДНК, о чем свидетельствует возросшая активность этого энзима у растений, обработан­ных ГМК [19].

ГМК как гаметоцид не проявляет высокой селективности действия, так как параллельно оказывает влияние на мери-стематическую ткань, где стимулирует процессы распада и ингибирует синтетическую активность клеток [29]. Очевидно,

15


'этим объясняются негативные эффекты, наблюдаемые при опрыскивании растений растворами ГМК: задержка в росте и развитии, морфологические аномалии и т. д. [20, 125].

Изменения в деятельности центров, программирующих природу синтезируемых белков и регулирующих их синтез, при включении механизмов стерильности вызывают сложные сдвиги в ферментативных системах. Низкая активность раз­личных энзиматшческих комплексов стерильных аналогов ози­мой пшеницы и угнетение активности окислительно-восстано­вительных процессов, лежащих в основе метаболизма, про­являются на ранних этапах формирования ,и развития микро­спор [6, 128]. Дезорганизация в энзиматических системах вы­зывает дисбаланс в аминокислотном, углеводном и нуклеино­вом пулах.

Хлорированные производные аляфатических карбоновых кислот, применяемые в качестве гаметощидов, вызывают на­копление в тканях пыльников большого количества аминокис­лот (а-аланина, р-аланина, аспарагиновой, глутаминовой, се-рина и др.), одновременно резко снижается содержание про-лиаа [8, 26, 43].

При сравнительных исследованиях мужской стерильности у различных видов растений отмечены изменения в соотно­шении отдельных аминокислот в аминокислотном пуле. Коли­чественный и качественный состав аминокислот обусловлены механизмами цитоплазматической регуляции и спецификой метаболизма растения. Так, в стерильных пыльниках сорго по сравнению с фертильными установлена анормальная акку^-муляция глицина и заниженное содержание аспарагиновой .кислоты, серина и аланина. М. W. Brooks, J. S. Brooks и -L. Chien [52] считают, что в данном случае специфическим признаком, обусловливающим мужскую стерильность, явля­ется блокирование глицина в синтезе пурина. У других ли­ний сорго с ЦМС обнаружено повышенное содержание трео-нина по сравнению с фертильными растениями. Пыльники последних включали больше аланина, глутаминовой кислоты и тирозина [43]. Вероятно, от типа стерильности и этапа, на котором возникают нарушения в синтетических процессах .клетки, зависит накопление или ингибирование образования определенных аминокислот.

.Сравнительные исследования содержания аминокислот у различных растений с разными формами мужской стериль­ности (функциональной, цитоплазматической и ядерной) по­казали, что во всех случаях было высокое содержание аспа-рагина' и низкое — пролина по сравнению с фертильными растениями [26, 43, 46]. Последующие эксперименты подтвер-

16


дили, что пыльники стерильных аналогов линий, получен­ных на основе цитоплазмы Т. timopheevi, характеризовались

-высоким содержанием свободного аспарагина и низким — пролина. Среди связанных аминокислот сохраняется та же закономерность [118].

^   Индукция мужской стерильности при использовании хими­ческих соединений, обладающих гаметоцидной активностью

'-(RMiK, FW-450 4- гиббереллин), сопровождалась аналогич­ными изменениями в аминокислотном пуле растений кукуру­зы: накоплением больших количеств a-алани'на, аспарагиновой

•и глутаминовой кислот, серина у стерилизованных растений с одновременным резким блокированием синтеза пролина [26]. Часть аспарагиновой кислоты подвергалась дальнейше­му аминированию, что приводило к образованию амида, со­держание которого у стерилизованных растений в отдельных случаях достигало 2%, или приблизительно половины от об­щей суммы всех свободных аминокислот [8]. Отмеченный мно­гими авторами дефицит пролина у растений с различным ти­пом мужской стерильности предполагает торможение синте­за белка путем включения механизмов мужской стерильно­сти на более ранних этапах белоксинтетической системы (при синтезе аминокислот), в результате чего тормозятся процес­сы аминирования.

Полноценное питание в течение микроспорогенеза и раз­вития пыльцы обусловливает нормальное развитие генера­тивных клеток. Массовое накопление свободного пролина на­чиналось после завершения мейоза, а в фазе тетрад он был обнаружен в заметных количествах [8]. Эта аминокислота при­нимает участие в ряде общих реакций метаболизма: активи­рует дыхание растительных тканей, регулирует поглощение кислорода, является донором NHz-групп при синтезе некото­рых аминокислот и стимулирует синтез хлорофилла [8]. Про-лин относят к числу характерных аминокислот щелочных ядерных белков-гистонов и протаминов, несущих генетиче­скую функцию в поддержании определенной структуры ДНК [9]. Влияние этой аминокислоты на активность генома связано с критическими этапами в развитии, когда незначительные структурные перестройки могут иметь решающее значение. Исключительно высокое содержание пролина в тканях гаме-тофита обусловливает определенную физиологическую «на­грузку», которую он выполняет в процессах формирования пыльцы.

В пыльце диплоидных сортов содержание пролина в два раза выше, чем в пыльце триплоидных, имеющих пониженную трертильность [8]. Эти данные свидетельствуют, что пролин .занимает особое место среди других аминокислот при форми-2—10287                                              17


ровании пыльцы и, возможно, является определяющим мета­болитом нормальных физиологических процессов.

Пролин пыльцы, по-видимому, вовлекается в самые ран­ние фундаментальные реакции гаметогенеза, и его дефицит в пыльниках может иметь прямое отношение к абортивности пыльцы. Содержание пролина начинает .снижаться на стадии мейоза и становится прогрессивным к периоду интерфазы микроспор, когда уже наблюдается дегенерация пыльцевого зерна. Дефицит пролина — это следствие некоторых дефек­тов в мейозе или в предшествующей стадии микроспорогене-за [118]. Параллельно накопление глутаминовой кислоты в стерильных пыльниках свидетельствует о торможении про­цессов превращения ее в пролин, предшественником которого она является. Относительно высокое содержание аспарагина в пыльниках растений с мужской стерильностью также обус­ловлено метаболическими отклонениями.

Индукция мужской стерильности вносит свои коррективы в биосинтетические процессы не только генеративных органов, но и всего растения. Общее содержание аминокислот в семе­нах и вегетативных органах стерильных растений пшеницы выше, чем фертильных, на 8%, что можно объяснить специ­фикой метаболической активности митохондрий стерильных растений [46, 63]. У нормально развивающихся растений на­копление свободного пролина начинается после редукционно­го деления и осуществляется за счет притока пролина из ве­гетативных органов [8].

Наблюдения за изменениями в динамике развития орга­низма, происходящими под влиянием веществ с гаметоцидной активностью во взаимосвязанной системе ДНК—iPHiK—бе­лок—аминокислоты, показали, что наиболее быстро и в зна­чительной степени изменяются активности энзиматических систем, затем проявляются ответные реакции в обмене нук­леиновых кислот и белка и относительно с большим опозда­нием осуществляются процессы, приводящие к изменению соотношения свободных аминокислот, органических кислот и аммония [98].

Многообразие действия хлорированных алифатических кислот на растительный организм предполагает возможность индуцирования мужской стерильности путем блокирования .разнообразных метаболических путей.

Попытки связать механизм избирательного действия были сделаны при изучении ряда хлорированных производных али-фатических карбоновых кислот, проявивших гаметоцидные свойства. Одним из предполагаемых механизмов селективного действия ар-дихлоризомасляной (FW-450) и трихлоруксус" ной (ТХУ) кислот считают торможение ферментативного син-

18


теза пантотеновой кислоты из пантоевой и (3-аланина [20]. Фи­зиологическая роль пантотеновой кислоты связана с тем, что она является функциональной группой конденсирующего фер­мента КоА. Хлорированные алифатические кислоты выступа­ют антиметаболитами р-аланина, поэтому синтез цантотено-вой кислоты является одним из чувствительных метаболиче­ских путей к этой группе соединений. Действие FW-450 опре­деляется конкуренцией с 2,4-диокси-р-метилмасляной кисло­той за локус, специфически активирующий фермент. Анало­гичный эффект отмечен при действии 2, 3, 3-трихлормасляной к 2, 3-дихлормасляной кислот. Недостаток рибозы (одного из компонентов КоА) повышает токсичность FW-450 и этрела. Исследования гербицидного действия производных алифати-ческих карбоновых кислот показали, что эффект применяе­мых соединений обусловлен нарушением синтеза КоА. В ре­зультате возникает дисбаланс в соотношении ряда аминокис­лот трикарбонового цикла. При этом снижается количество лимонной и возрастает содержание яблочной кислоты, проис­ходит более интенсивный синтез р-аланина и аспарагиновой кислоты.

В настоящее время преждевременно судить об определен­ной специфичности действия конкретных гаметоцидов, о «ме­сте первичного действия» соединения. Возможно, механизм гаметоцидного действия определяется конкуренцией между веществом, обладающим гаметоцидньши свойствами, и опре­деленными естественными метаболитами тканей генератив­ных органов.

На основании исследований конкуренции между пантоте-натом и далапоном появилась возможность предсказать но­вые аналоги пантоата в виде хлорзамещенных алифатаче-ских кислот. Были синтезированы 4 соединения, биологиче­ская активность которых (в данном случае гербицидная) варьировала в зависимости от степени хлорирования и место­


положения хлора: (далапон); при кон­

центрации 0,005 М активность далапона составляла 76%, при 0,05 М—99%.


У соединения
активность при тех же


концентрациях составляла соответственно 77 и 100%.                                                      19


проявляли фитотоксический эффект: при концентрации 0,05 М он был равен 97 и 12%, при 0,05 М — соответственно 100 и 83%.

Таким образом, степень биологической активности препа­рата не имеет прямо пропорциональной зависимости от кон­центрации вещества, что свидетельствует о сугубо физиологи­ческой активности соединения, связанной с особенностями ме­таболизма растения.

В исследованиях по биохимизму действия ряда гербици­дов установлено существенное влияние их на трансформацию энергия в клетке, повышение интенсивности окислительных процессов и угнетение фосфорелирования в митохондриях [10, 14, 21, 23]. Нарушение сопряженности окисления и фос­форелирования — результат угнетения активности многочис­ленных ферментов цикла Кребса и дыхательной цепи мито-хондрий. Получены дополнительные сведения о гербицидах, обладающих одновременно и гаметоцидной активностью. В частности, при нанесении далапона на растения люпина .из­менялось соотношение сульфгидрильных и дисульфидных групп, входящих в состав активных центров многочисленных энзимов, участвующих в разнообразных ферментативных ком­плексах [13]. Кроме того, установлено повышенное содержа­ние изофлавоновых глюкозидов и изменение их состава при o6pai6oTKe растений 2,4Д [22].

Появление хинонов — продуктов окислительного превра­щения фенольных соединений с высокой биологической ак­тивностью и их взаимодействие с амино- и сульфгидрильны-ми группами белков, сульфгидрильными группами аскорби­новой кислоты и другими SH-содержащими компонентами клетки обусловливают блокирование целых систем энзимати-чески взаимосвязанных комплексов. От окислительно-вос­становительных условий и энергетических возможностей тка­ни, особенно спорогенной, зависят синтез и обмен важнейших органических соединений.

20


Характерными признаками ЦМС у сорго являются угне­тение окислительно-восстановительных процессов и снижение энергетического обмена [41]. Различия   в активностях АТФ'азы обнаруживались у стерильных аналогов уже в фа­зе тетрад и сохранялись в дальнейшем на всех фазах разви­тия микроопор [16]. Среди соединений с гаметоцидными свой­ствами 2,4Д снижает содержание АТФ и АДФ — адениннук-леотидов, основных аккумуляторов энергии в клетке. Уста­новлено, что 2,4Д ингибирует активность аденилаткиназы — фермента, осуществляющего равновесное соотношение ком­понентов аденилатного пула: 2 АДФ ^ АМФ+ДТФ [21].

Растительные гормоны, проявившие гаметоцидные свой­ства (2,4Д, ИУК, НУК, ГКз и т. п.), могут индуцировать муж­скую стерильность на тех уровнях метаболических процес­сов, на которых они оказывают свое регуляторное действие:

на уровне генома, мембран, аллостерического эффекта. Воз­можно и одновременное влияние их на разные уровни, но во всех случаях отмечена взаимосвязь физиологически активных веществ, к которым относятся гаметоциды, с изменениями в энергетическом обмене клетки.

Существование специфических рецепторов в клеточных структурах и мембранах, способных обратимо связывать аук­сины [25], может служить молекулярно-биологической интер­претацией действия ряда соединений, проявивших гаметоцид-ную активность на различных культурах и относящихся к ауксинам (ИУК, НУК, 2,4Д, Г.Кз, кинетин и др.) [11, 12, 14, 17, 58, 135].

Отмечено, что растительные гормоны (2,4Д, ИУК, ГКз), вызывающие при определенных концентрациях различную степень индукции мужской стерильности, влияют на актив­ность энзимов, связанных с метаболизмом углеводов, опреде­ляющих структуру клеточных оболочек, с такими как р-1,4-глюканаза, р-1,3-глюканаза, (3-1,6-глюканаза я гемицеллю-лаза, а также а-1,3- и а-1,6-глюканазы [73, 99, 136]. Повы­шение активности глюканазных энзимов взаимосвязано с про­цессами деструкции их субстратов, а следовательно, и с изме-нениями в каллозной оболочке материнской клетки пыльцы и формирующихся тетрад, так как она является Р-1,3-свя-занным полимером глюкозы. Установлено, что ИУК и 2,4Д способствуют увеличению р-1,3-глюканаз'ной   активности, в результате чего разрываются перекрестные связи в пределах клеточных стенок и оболочек, что обусловливает возрастание их эластичности и проницаемости [55].

Введение ИУК в растительную клетку повышает утилиза­цию глюкозы путем активации энзима УДФ-зависимой глю-кансинтетазы, локализованной в пределах аппарата Гольд-21


жи, что способствует формированию и повышенному содер­жанию глюканов, галактанов и пентозанов [42]. Подобным образом 2,4Д включается в один из уровней метаболизма клетки (через углеводы, путем активации плазменной, связан­ной с мембранами глюкансинтетазы), что способствует ути­лизации УДФ-арабинозы я увеличению количества связанных остатков арабинозы с галактаном [136]. Повышение числа сшивок в молекулах галактана изменяет пластичность кле­точных стенок. Вместе с тем аккумуляция 2,4Д в мембранах вызывает нарушение комплекса связанного с мембрана­ми белкового фактора, который обусловливает активность PHiK полимеразы, транскрибирующей определенные мРНК [66].

В опытах по конкурентному вытеснению связанных эффек-торов (производные феноксиуксусной кислоты и ИУК) на­глядно продемонстрировано, что связывание биологически ак­тивных хлорированных производных мембранами (эффектор-рецептор) носит специфический характер [14]. Изменяя фун­кциональную активность мембран и связанных с ними энзи-мов, ауксины с гаметоцидными свойствами могут вызывать индукцию синтеза определенных мРНК, ответственных за •продуцирование ряда энзимов, среди которых имеются фер­менты, преобразующие углеводные компоненты мембран и клеточных оболочек. Возрастающая при этом проницаемость может вызывать нарушение селективной изоляция формиру­ющихся тетрад с последующим их деградированием. Пред­полагают, что каллозная оболочка функционирует как «мо­лекулярный фильтр», позволяющий проникать внутрь мате­ринских клеток пыльцы основным питательным элементам, за исключением больших молекул. Последние в эту раннюю фазу могут помешать установлению автономии ядра гаплоид-ной споры в пределах собственной цитоплазмы [98].

Химическая изоляция материнских клеток пыльцы в ста­дии тетрад от окружающей диплоидной цитоплазмы является необходимой предпосылкой нормального развития пыльцы [94]. Установлено, что меченый тимидин поступает в материн­ские клетки пыльцы только до формирования каллозной обо­лочки, но не проникает, если они заключены в каллозу [72]. При изменении последней и освобождении тетрад метка сво­бодно поступала в микроспоры. Эти наблюдения позволили сделать вывод о функционировании каллозной оболочки как «молекулярного фильтра».

Страницы: 1, 2, 3, 4, 5


на тему рефераты
НОВОСТИ на тему рефераты
на тему рефераты
ВХОД на тему рефераты
Логин:
Пароль:
регистрация
забыли пароль?

на тему рефераты    
на тему рефераты
ТЕГИ на тему рефераты

Рефераты бесплатно, реферат бесплатно, курсовые работы, реферат, доклады, рефераты, рефераты скачать, рефераты на тему, сочинения, курсовые, дипломы, научные работы и многое другое.


Copyright © 2012 г.
При использовании материалов - ссылка на сайт обязательна.