на тему рефераты
 
Главная | Карта сайта
на тему рефераты
РАЗДЕЛЫ

на тему рефераты
ПАРТНЕРЫ

на тему рефераты
АЛФАВИТ
... А Б В Г Д Е Ж З И К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я

на тему рефераты
ПОИСК
Введите фамилию автора:


Дипломная работа: Измерительный контроль


 (48)

где n – число позиций применяемых материалов;

m – номенклатура примененных покупных изделий и полуфабрикатов;

HMi – норма расходов материала, кг;

ЦМi- цена материала, руб/ кг;

НОi- норма реализуемых отходов, кг;

UOi – цена отходов, руб/кг;

Nnj - количество покупных изделий, полуфабрикатов j-го вида;

Цnj – цена покупного изделия, полуфабриката j-го вида, руб;

КТЗ – величина транспортно-заготовительных расходов, КТЗ=(1,03…1,05).

Отсюда получаем: СМ=4185

Для создания данного прибора необходимо участие следующих специалистов:

-  Фрезеровщик…………. 4 разряд…..……70 руб/час..……...1 чел.

-  Токарь……………….4 разряд………..…70 руб/час..……...1 чел.

-  Слесарь…………...4 разряд…………..70 руб/час..……...1 чел.

-  Сборщик…………….6 разряд………..…80 руб/час..……...1 чел.

-  Юстировщик………..6 разряд………..…80 руб/час..……...1 чел.

-  Монтажник эл. части…6 разряд………...60 руб/час..……...1 чел.

Продолжительность работ:

-  Фрезеровщик………………..16 час

-  Токарь……………………….16 час

-  Слесарь…………………….....8 час

-  Сборщик………………….…..16 час

-  Юстировщик…………………4 час

-  Монтажник эл. части………..4 час

Основная заработная плата  определяется по формуле:

где k - количество категорий разработчиков;

Пmj - количество разработчиков данной категории;

Зmj - среднечасовая заработная плата j-категории разработчиков, руб.;

Р - продолжительность работы, выполняемой работником определенной категории, час.

Таким образом, получаем:

Расчет затрат на дополнительную заработную плату

Дополнительная заработная плата  определяется по формуле:

где d - норматив затрат на дополнительную заработную плату от основной заработной платы d=20%.

Таким образом, получаем:

Расчет затрат на отчисления в социальные внебюджетные фонды

Отчисления в социальные внебюджетные фонды определяются по формуле:

где r - суммарная величина отчислений в единый социальный налог 35,6%

Таким образом, имеем:

Расходы на содержание и эксплуатацию оборудования определяются по нормативу к сумме статей 2 и 3 (100%).

Сэксп = (4440 + 890) = 5330 руб.

Цеховые расходы определяются по нормативу от суммы затрат по статьям 2, 3 и 5 (30%).

Сцех =(4440+890+5330)·0,3 =3200 руб.

Цеховая себестоимость изделия определяется суммой затрат по статьям 1 - 6.

Собпрсеб =(4185+4440+890+1900+5330+3200) ≈ 20000руб.

Общепроизводственные расходы определяются по нормативу к статье 7 (20-30%).

Свнпр = 20000 · 0,25 =5000 руб.

Общепроизводственная себестоимость изделия определяется суммой затрат по статьям 7 и 8.

Собпрсеб = (20000 + 5000) = 25000 руб.

Внепроизводственные расходы определяются по нормативу к статье 9 (10-20%).

Свнпр = 25000 • 0,15 = 3750 руб.

Полная себестоимость изделия определяется суммой затрат по статьям 9 и 10.

Спсеб = (25000 + 3750) = 28750 руб

10.5 Определение экономических результатов

Прибыль от реализации объекта разработки (Пр):

 (49)

40250 – 28750 = 11500 руб

Рентабельность объекта разработки (Рр):

 (50)


Срок окупаемости затрат на разработку (Ток):

 (51)

Полученные данные сведены в таблицу №9.

плоскостность лазерный диафрагма

Таблица № 9

№ п.п Показатели Ед. изм. Аналог Устройство
1. Технико-эксплуатационные показатели
1.1 Погрешность измерения мм 0,1 0,02
1.2 Габариты измеряемых деталей мм 10000х10000 12000х12000
1.3 Диапазон измеряемых отклонений мм

0

+1

±1,5
1.4 Регистрация результатов - не автоматическая автоматическая
1.5 Получение результатов - путем пересчета сразу
2 Экономические показатели
2.1 Прибыль руб. - 11500
2.2 Рентабельность % - 40
2.3 Срок окупаемости год - 2,24

11.БЕЗОПАСНОСТЬ ЖИЗНИДЕЯТЕЛЬНОСТИ И ОХРАНА ТРУДА

11.1 Условия эксплуатации устройства

Дипломная работа посвящена разработке устройства для контроля плоскостности. Устройство предназначено для контроля плоскостности корпусных деталей, станков, машин, приборов, устройств и отдельных элементов. Проанализируем факторы, определяющие условия эксплуатации устройства для контроля плоскостности и предоставим их в виде таблицы.

Таблица № 11

Характеристика условий эксплуатации устройства

№ п.п Наименование фактора Показатели фактора Нормативные документы
1.    Место эксплуатации устройства Цех
2.    Вид исполнения конструкции переносная
3.    Вес устройства (ориентировочный), (кг) 4
4.    Температура воздуха,(˚С) 22-24 Гост 12.1.005-88
5.    Относительная влажность воздуха (%) 40-60 ГОСТ 12.1.005-88
6.    Тип пола Неэлектропроводный
7.    Токопроводящая пыль Отсутствует
8.    Химически активная среда Отсутствует
9.    Металлоконструкции, соединенные с землей Отсутствует
10.    Твердые или жидкие горючие вещества Отсутствует
11.    Пыле–паро-газовоздушные взрывчатые смеси Отсутствует
12.    Минимальная освещенность (лк) 100 СНиП 23-05-95
13.    Вид питающей сети 220 ГОСТ12.1.038-82
14.    Другие факторы (шум, вибрация, ЭМП и т.д. Отсутствует

ГОСТ 12.1.003-83

ГОСТ 12.1.012-90

ГОСТ 12.1.006-84


11.2 Анализ и выявление потенциально опасных и вредных факторов на начальной стадии проектирования конструкции устройства для контроля плоскостности

Устройство предназначено для контроля плоскостности корпусных деталей, станков, машин, приборов, устройств и отдельных элементов. В качестве источника излучения используется полупроводниковый лазерный диод. Устройство имеет передвигающую часть - устройство для измерения отклонений.

На основании ГОСТ 12.0.003-83 [22] составим перечень потенциально опасных и вредных факторов, возникающих при эксплуатации установки.

Физические опасные и вредные производственные факторы:

·  передвигающиеся изделия;

·  повышенная яркость света.

Психофизиологические опасности:

·  нервно- психические перегрузки;

·  умственное перенапряжение и монотонность труда.

11.3 Расчет лазероопасной зоны

Лазерное излучение характеризуется монохроматичностью, высокой когерентностью, чрезвычайно малой энергетической расходимостью луча и высокой энергетической освещенностью.

В облучаемом лазерным лучом веществе возможны проявления как чисто электрических, так и химических эффектов, приводящих к ослаблению связей между молекулами, их поляризации, вплоть до ионизации молекул облучаемого вещества.

Таким образом, лазерное излучение, безусловно, представляет опасность для человека. Наиболее оно опасно для органов зрения. Практически на всех длинах волн лазерное излучение проникает свободно внутрь глаза. Лучи света, прежде чем достигнуть сетчатки глаза, проходят через несколько преломляющих сред: роговую оболочку, хрусталик и, наконец, стекловидное тело. Наиболее чувствительна к вредному излучению сетчатка. В результате фокусирования на малых участках сетчатки могут концентрироваться плотности энергии в сотни и тысячи раз больше той, которая падает на переднюю поверхность роговицы. Энергия лазерного излучения, поглощения внутри глаза, преобразуется в тепловую энергию. Нагревание может вызвать различные повреждения и разрушения глаза.

Ткани живого организма при малых и средних интенсивностях облучения почти непроницаемы для лазерного излучения. Поэтому кожные покровы оказываются наиболее подверженными его воздействия. Степень этого воздействия определяется, с одной стороны, параметрами самого излучения: чем выше интенсивность излучения и чем длиннее его длина волна, тем сильнее воздействие; с другой стороны, на исход поражения кожи влияет степень ее пигментации. Пигмент кожи является как бы своеобразным экраном на пути излучения в расположенные под кожей ткани и органы. Эти последствия относятся к случаям прямого облучения вследствие грубых нарушений в эксплуатации лазерных установок. Рассеяно или концентрированно отраженное излучение малой интенсивности воздействует значительно чаще, результатом могут быть различные функциональные нарушения в организме – в первую очередь в нервной и сердечно-сосудистой системах. Лица, работающие в условиях воздействия лазерного отраженного излучения повышенной интенсивности, жалуются на головные боли, повышенную усталость, беспокойный сон, чувство усталости и боли в глазах. Эти неприятные ощущения проходят без специального лечения после упорядочного режима труда и отдыха и принятия соответствующих защитных профилактических мер.

Нормирование лазерного излучения осуществляется по предельно допустимым уровням облучения (ПДУ). Это уровни лазерного облучения, которые при ежедневной работе не вызывают у работающих заболеваний и отклонений в состоянии здоровья.

Согласно «Санитарным нормам и правилам устройства и эксплуатации лазеров» - СН 5804-91- ПДУ лазерного излучения определяется энергетической экспозицией облучаемых тканей (ДЖ см-2).

Лазеры по степени опасности генерируемого ими излучения подразделяются на четыре класса:

1 класс – выходное излучение не представляет опасности для глаз и кожи;

2 класс – выходное излучение представляет опасность при облучении глаз прямым или зеркально отраженным излучением;

3 класс – выходное излучение представляет опасность при облучении глаз прямым, зеркально отраженным, а также диффузно отраженным излучением на расстоянии 10 см от диффузно отражающей поверхности и (или) при облучении кожи прямым и зеркально отраженным излучением;

4 класс – выходное излучение представляет опасность при облучении кожи диффузно отраженным излучением на расстоянии 10 см от диффузно отражающей поверхности.

Класс опасности лазерной установки определяется на основании длины волны излучения λ(мкм), расчетной величины энергии облучения Е (ДЖ) и ПДУ для данных условий работы.

Определение уровней облучения персонала для лазеров 2÷4 классов должно проводиться периодически не реже одного раза в год в порядке текущего санитарного надзора.

Кроме того, осуществляется контроль за соблюдением:

- предельно допустимых концентраций вредных веществ в воздухе рабочей зоны;

- предельно допустимых уровней виброскоростей;

- предельно допустимых уровней электромагнитных излучений;

- предельно допустимых уровней ионизирующих излучений.

Лазеры 2÷4 класса должны снабжаться сигнальными устройствами, работающими с момента начала генерации до ее окончания. Конструкция лазеров 4 класса должна обеспечиваться возможностью дистанционного управления.

Для ограничения распространения прямого лазерного излучения за пределы области излучения лазеры 3÷4 класса должны снабжаться экранами, изготовленными из огнестойкого, неплавящегося светопоглащающего материала.

Лазеры 4 класса должны размещаться в отдельных помещениях. Внутренняя отделка стен и потолка должна иметь матовую поверхность. Для уменьшения диаметров зрачков необходимо обеспечить высокую освещенность на рабочих местах ( более 150 лк).

 В том случае, когда коллективные средства защиты не позволяют обеспечить достаточной защиты, применяются средства индивидуальной защиты (СИЗ)- противолазерные очки и защитные маски.

Наш лазер относится к 2 классу опасности.

Для обеспечения безопасности персонала, обслуживающего лазерные установки, необходимо определить границы лазероопасной зоны (ЛОЗ), т.е. пространства, в пределах которого уровень лазерного излучения превышает ПДУ.

Лазер, который используется в данном дипломном проекте, генерирует излучение с длиной волны λ= 650 нм. Оно создает на отражающей поверхности пучок диаметром 8 мм. Мощность излучения лазера 5 мВт, коэффициент отражения излучения поверхностью 0.5. Расстояние от места нахождения оператора до отражающей поверхности находится на расстоянии мм. Угол между нормалью к поверхности и направлением наблюдения 45˚. Время воздействия излучения принимается равным рефлекторной реакции глаза 0.25с.

Определим ПДУ энергетической экспозиции на роговице глаза.

Угловой размер источника излучения ( пятна на поверхности):


 (52)

где d – диаметр пятна излучения лазера, см;

Θ – угол между нормалью к поверхности источника и направлением наблюдением наблюдения, град;

R – расстояние от поверхности до точки наблюдения.

0.012

Далее находим ПДУ излучения, не вызывающие первичных Н1 и вторичных и Н2 биологических эффектов:

 (53)

где Н1- энергетическая экспозиция на роговице глаза в зависимости от длительности воздействия и углового размера источника при максимальном диаметре зрачка d3;

k1- поправочный коэффициент на длину волны излучения.

где Нj – энергетическая экспозиция на роговице глаза в зависимости от длины волны излучения;

Фp – фоновая освещенность роговице глаза (для d3 =8 мм; Фр=10-2лк).

Н1= 8·10-3 ДЖ/см2

Н2=6.5·10-7ДЖ/ см2.

В качестве ПДУ принимаем 6.5·10-7ДЖ/ см2. Так как граница , то граница ЛОЗ определяется по формуле:


 (54)

где Lе – энергетическая яркость отражающей поверхности;

Sq – площадь пятна на отражающей поверхности;

-угол между направлением визирования и нормалью к поверхности;

 -энергетическая освещенность на роговице глаза.

Sq= 0.05 см

=2.6·10-6 Вт/см2 (55)

Энергетическая яркость поверхности Lе может быть определена из соотношения:

 (56)

где Ее – энергетическая освещенность поверхности;

- коэффициент отражения поверхности.

=0.1  (57)

Lе=0.01

Rгр= 11,6 см

Так как границы ЛОЗ находится от лазерной установки ближе чем оператор, то ему не нужно использовать защитные очки.

11.4 Описание мероприятий, обеспечивающих безопасность планируемых исследований

Безопасность планируемых изделий должна быть обеспечена в соответствии с ГОСТ12.2.003-91. Оборудование производственное:

- материалы конструкции не оказывают опасное и вредное воздействие на организм человека при всех предусмотренных условиях эксплуатации (сталь, алюминий);

- конструкция исключает на всех предусмотренных режимах нагрузки на сборочные единицы, способные вызвать разрушение, представляющие опасность для рабочих;

- элементы конструкции не имеют острых кромок, углов, заусенцев и поверхностей с неровностями, представляющими опасность травмирования работающих (предусмотрены фаски размером 1мм Х 45˚);

-конструкция исключает ошибки при монтаже, которые могут явиться источником опасности;

-рабочее место, его размеры и взаимное расположение элементов (органов управления, средств отображения информации, вспомогательного оборудования) должны обеспечивать  безопасность при использовании устройства для контроля плоскостности по назначению,  техническом обслуживании, ремонте и уборке, а также соответствовать эргономическим требованиям;

- система управления устройством исключает возникновение опасности в результате совместного функционирования всех единиц устройства для контроля плоскостности.

11.5 Пожарная безопасность

Согласно ГОСТ 12.1.013.-78 и учетом эксплуатации электроустановок классифицируем помещение для эксплуатации по степени поражения людей электрическим током, как помещение без повышенной опасности.

Помещение по взрыво-пожароопасности относится к категории Д (согласно СНиП II-90-81) и должно удовлетворять требованиям по предотвращению и тушению пожара по

ГОСТ 12.1.004-85. Обязательно наличие телефонной связи и пожарной сигнализации. Материалы, применяемые для отделки рабочих помещений, должны быть огнестойкими. В цеху должны быть размещены углекислотные огнетушители типа ОУ-2, ОУ-5, ОУ-8. В качестве вспомогательного средства тушения пожара могут использоваться гидрант или устройства с гибкими шлангами.


СПИСОК ЛИТЕРАТУРЫ

1.МарковН.Н.,Ганевский Г.М. Конструкция, расчет и эксплуатация измерительных инструментов и приборов.-М.:Машиностроение, 1981.-367с.,ил.

2.Кутай А.К., Романов А.Б., Рубинов А.Д. Справочник контрольного мастера.-Л.: Лениздат, 1980.-304с.,ил

3.Справочник по производственному контролю в машиностроении / под ред. А.К.Кутая- Л.:Машиностроение, 1974.-676с., ил

4. Якушенков Ю.Г. Основы оптико-электронного приборостроения.-М.: Советское радио,1981.263с.,ил

5.Проектирование оптико-электронных приборов / под ред. Ю.Г.Якушенкова-М.: Машиностроение,1981.-263с., ил.

6. Вагнер Е.Т. и другие Лазерные и оптические методы контроля в самолетостроении. -         М.: Машиностроение, 1977.-176с

7.Аксененко М.Д., Бараночников М.Л. Приемники оптического излучения.-Справочник- М.: Радио и связь,1987. 296с.,ил

8. Справочник конструктора оптико-механических приборов / под ред. В.А. Панова.-Л.: Машиностроение,1980.-742с.,ил

9.Ишанин Г.Г.Приемники излучения оптических и оптико-электронных приборов.Л.:Машиностроение, 1986.-175с, ил

10.Погарев Г.В. Юстировка оптических приборов.Л.;Машиностроение, 1982.-237с.,ил

11.Ключникова Л.В. , Ключников В.В. Проектирование оптико-механических приборов.СПб.:Политехника,1994.-206с,ил

12.Якушенков Ю.Г.Теория и расчет оптико-электронных приборов.-М.;Машиностроение,1989.-360с.ил.

13.Бегунов Б.Н., Заказнов Н.П. Теория оптических систем.М.,Машиностроение,1973.488с

14. Чуриловский В.Н. Теория оптических приборов.М.,Машиностроение.1966.-564с

15.Кулагин В.В. Основы конструирования оптических приборов.Л.: Машиностроение.1982.-312с.,ил

16.Гутников В.с. Интегральная электроника в измерительных устройствах.-Л.:Энергоатомиздат,1988.-304с.ил

17. Ефремов А.А., Законников В.П., Подобрянский А.В. Сборка оптических приборов .-М.,Высшая школа.1978.-296с.,ил.

18 ЕльниковН.Т., Дитев А.Ф., Юрусов И.К. Сборка и юстировка оптико-механических приборов. М., Машиностроение,1974.-348с

19 Экономическая часть дипломных разработок. Методические указания для студентов технических специальностей всех форм обучения.- ИТМО,1998

20Латыев С.М. Конструирование точных ( оптических) приборов: части1-3:учебное пособие.-СПб., 1999-2002

21.ГОСТ 24642-81 (СТСЭВ301-76) Допуски и формы расположения поверхностей

22. ГОСТ12.0.003-83 Опасные и вредные производственные факторы

23 ГОСТ 12.2.003-91 Оборудование производственное

24.СНиП 5804-91


Страницы: 1, 2, 3, 4, 5, 6, 7


на тему рефераты
НОВОСТИ на тему рефераты
на тему рефераты
ВХОД на тему рефераты
Логин:
Пароль:
регистрация
забыли пароль?

на тему рефераты    
на тему рефераты
ТЕГИ на тему рефераты

Рефераты бесплатно, реферат бесплатно, курсовые работы, реферат, доклады, рефераты, рефераты скачать, рефераты на тему, сочинения, курсовые, дипломы, научные работы и многое другое.


Copyright © 2012 г.
При использовании материалов - ссылка на сайт обязательна.