на тему рефераты
 
Главная | Карта сайта
на тему рефераты
РАЗДЕЛЫ

на тему рефераты
ПАРТНЕРЫ

на тему рефераты
АЛФАВИТ
... А Б В Г Д Е Ж З И К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я

на тему рефераты
ПОИСК
Введите фамилию автора:


Реферат: Администрирование локальных сетей


 

Временные метки

 

Размер файла в байтах

 

Владелец / группа

 

Ссылки на файл

 
Доступ к блокам данных

Тип файла и атрибуты

 


Как было указано выше, inode содержит указатель на блоки данных. В зависимости от размера файла данные содержащиеся в файлах могут быть доступны напрямую через указатели содержащиеся в inode, либо через двойную или тройную ссылку. Первый уровень ссылок позволяет адресовать непосредственно из inode 12 блоков данных,  если этого не достаточно для адресации файла соответствующего размера то 12-й блок используется для адресации второго уровня. Размер ссылки составляет 4 байта, поэтому при размере блока в 4096 байт он может адресовать 1024 блока данных. Аналогичным образом осуществляется адресация третьего уровня. При этом ограничение на максимальный размер файла практически снимается. Помимо указателя на блок, inode хранит указатель на фрагмент. Этот указатель может быть интерпретирован как ссылка на целый блок или оддин или несколько его фрагментов. Если обьем данных файла такой что последний блок остается не полностью заполненным то при этом используются фрагмент(ы). Рассмотрим этот случай на примере 20К файла хранимого в 8К блоках. Файл будет хранится в 2-х полных блоках и 4-х фрагментах. Этот случай изображен на рисунке:


                                  Размер файла

                                                                                                        8             15   24           31   40  43    46


                                                                1

                               

                                                                2

           блоки адреceсуемые              3

                напрямую с inode

                                                                4

                                                            12

Когда для записи файла требуется блок или фрагмент, система начинает искать свободныйе блоки на диске. Когда файловая система заполненная, выполняется очень долгие линейные поиски для нахождения свободных блоков, и обычно находится блок соседний с тем котрый использовался при записи предыдущего файла. В конце концов это приводит к сильному падению производительности файловой системы. Поэтому для более быстрого поиска свободных блоков  на файловой системе резервируется некоторая часть свободного места (minfree). Этот параметр задается при создании файловой системы и может быть изменен в дальнейшем. Как правило это 10% от всего места отведенного под файловую систему.

Распределение дискового места.

Свободное место на диске определяется через битовую карту ассоциированную с каждой группой цилиндров. Битовая карта содержит один бит для каждого фрагмента. Для определения свободен ли блок, система проверяет смежные фрагменты. Пример куска битовой карты для файловой системы использующей 1024-х байтные фрагменты и 8192-х байтные блоки показан ниже:

Битовая карта 00000000 00000011 11111100 11111111
Номера фрагментов 0-7 8-15 16-23 24-31
Номера блоков 0 1 2 3

Фрагменты с номерами 14-21 в этом примере сободны (отмечены 1), а фрагменты 0-13 и 22-23 уже заняты. Любые восемь подряд идущих фрагментов не могут составлять блок, только восемь фрагментов выровненных по границе блока могут составить блок. HP-UX пытается положить все все файлы находящиеся в одной директории в одну и туже группу цилиндров. Новосозданные директории помещаются в те группы цилиндров где наибольшее количество свободных inodes и наименьшее количество директорий. Если размер файла превішает порог определяемій параметром maxbpg (определяется при создании файловой системі и может меняться в дальнейшем) то HP-UX начинает выделять свободные блоки из другой группы цилиндров. Это позволяет более тесно группировать в одну группу цилиндров файлы находящиеся в одной директории  путем размазывания больших файлов по нескольким группам цилинров.

Модификация файлов в HP-UX

Каждій раз когда происходит запись в файл, данные сначала записываются в буферный кэш находящийся в памяти. Физический диск обновляется ассинхронно по отношению к кэшу. Изменение данных на диске принадлежащие к определенной inode происходит позже, за исключерием если файл біл откріт в синхронном режиме (параметр O_SYNC O_SYNCIO в системных вызовах open() и fcntl()). Если система останавливается без сброса буферов на диск то файловая система приходит в сосотояние с нарушеной целостностью. В єтом случае необходимо ее восстановление утилитой fsck. Команда sync может быть использована для принудительного сброса буферов на диск в любой момент времени. Системній демон syncer выполняет периодический сброс буферов на диск. Приведем список изменений происходящих в фаловой системе при выполнении некоторых основных операций над ней:

                Главный суперблок                          сбрасывается на диск при выполнениии команды

umount или команды sync при условии что файловая

система была модифицирована

                Inodes                                                    в зависимости от параметра ядра fs_async информация

                                                                                Обновляется либо синхронно либо ассинхронно по

Отношению к буферному кєшу

                Блоки данных                                     In-core блоки (директории, файлы, пайпы, симлинки,

FIFO) записываются на диск после модификации. Блоки данных файлов буферизируются. Физически запись на диск происходит когда выполняется команда sync или системный вызов fsync() или непосредственно после модификации если на файл при открытии установлен флаг O_SYNC.

Информация о группе                      эта информация сбрасывается на диск после цилиндров                                     выполнения sync (fsync).

Замечание: команда reboot –n перегружает систему без сброса буферов на диск. Эту команду нужно использовать после выполнения проверки и устранения сбоев корневой файлой системы. Остальные файловые системы необходимо проверять только в отмонтированном состоянии.

Менджер логических дисков LVM

Перед появлением HP-UX 10.* управление дисками в сриях HP 800 и HP 700 осуществлялось различным образом. В серии 800 была возможность разбивки диска на жестко определенные партиции, а также управление через LVM. В серии 700 таких возможностей не было, и единственное что можно было использовать – так это использование целого диска для создания файловой системы. С появлением HP-UX 10.* ситуация радикально изменилась, LVM стал доступен на обеих сериях и является рекомендуемым инструментом для работы с файловыми системами. Он представляет собой псевдодрайвер ядра системы эмулирующий логические диски.

Что такое Logical Volumes и в каких случаях их следует использовать ?

Logical Volumes (LV) это набор дисковых участков с одного или более дисков организованных в таком виде, что операционная система видит их как один логический диск.  Как и физические дискиони могут быть использованы для поддержки файловых систем, raw областей данных, swap или dump областей. Использование LV оправдано в случаях больших файловых систем которые не умещаются на одном диске и (или) нуждаются в последующем расширении а также в случаях когда необходимо организовать резервирование (зеркалирование) данных или когда к файловой системе предъявляются жесткие требования по производительности.


 

 

 
 Physical Volumes

        (диски)

/dev/dsk/c0t5d0

 

/dev/dsk/c0t6d0

 

/dev/dsk/c0t7d0

 


     Volume Groups

       (пул дисков)


Для использования LVM диски должны быть инициализированны как physical volumes. Physical volumes идентифицируются именами ссответствующих файлов-устройств дисков /dev/dsk/cntndn и /dev/rdsk/cntndn. Затем из одного или нескольких дисков собирается volume group.  Один физический диск может принадлежать только к одной volume group. Максимальное число volume group которое может быть в системе определяется параметром maxvgs. Одна volume group может содержать не более 255 физических дисков. Дисковое пространство из volume group распределяется между одной или несколькими logical volumes. Дисковое пространство из logical volumes может быть использовано для создания файловой системы, под swap или dump области.  LVM разбивает каждый диск на набор адресуемых блоков называемых physical extents. Их размер определяется во время создания volume group и одинаков для всех дисков входящих в volumes group. Размер physical extents варьируется от 1 до 256 Мб, по умолчанию он равен 4Мб. Базовым блоком для адресации logical volumes является logical extent, он напрямую отображается в physical extents. В HP-UX команды показывающие эти отображения имеют названия pvdisplay и lvdisplay:

# pvdisplay /dev/dsk/c0t5d0

--- Physical volumes ---

PV Name                              /dev/dsk/c0t5d0

VG Name                              /dev/vg00

PV Status                              available

Allocatable                            yes

VGDA                                     2

Cur LV                                   9

PE Size (Mbytes)                 4

Total PE                                 511

Free PE                                 81

Allocated PE                         430

Stale PE                                0

IO Timeout (Seconds)        default

# lvdisplay /dev/vg00/lvol1

--- Logical volumes ---

LV Name                               /dev/vg00/lvol1

VG Name                              /dev/vg00

LV Permission                     read/write

LV Status                               available/syncd

Mirror copies                        0

Consistency Recovery       MWC

Schedule                               parallel

LV Size (Mbytes)                 48

Current LE                            12

Allocated PE                         12

Stripes                                   0

Stripe Size (Kbytes)            0

Bad block                              off

Allocation                              strict/contiguous

Если logical volumes используется для корневой (root) файловой системы, первичной swap области или dump области, physical extents должны распределяться методом contiguous. Это означает что между они должны следовать непрерывно на одном физическом диске и между ними не должно возникать прпомежутков. Другие logical volumes использующиеся для некорневых файловых систем могут не следовать этому ограничению.

Для определения требуемого объема  logical volume необходимого для создания файловой системы можно  использовать следующую диаграмму:


               

Управление Logical Volumes (LV)

Системная утилита SAM позволяет выполнять большинство но не все операции над LV. К тем задачам с которыми она справляется можно отнести:

·     Создание и удаление volume groups.

·     Добавление и удаление дисков из volume groups.

·     Создание, удаление и модификация logical volumes.

·     Создание и увеличение обьема файловых систем находящихся на logical volumes.

·     Cоздание и модификация swap и dump logical volumes.

Для этого, после запуска SAM нужно войти в раздел “Disks and file systems”  а затем в один из нужных подразделов. Все дальнейшие действия выполняются с использованием графической оболочки и являются интуитивно понятными. Все тоже самое можно выполнить используя команды HP-UX.

Создание physical volume (PV).

            pvcreate /dev/rdsk/c0t6d0

Все данные имеющиеся на этом диске будут потерены, в качестве аргумента программы pvcreate необходимо использовать символьный (raw) файл-устройство диска. Послк инициализации, данный диск можно рассматривать как physical volume.

Помещение PV в одну из volume groups (VG)

Если необходимо создать новую VG, то в самом начале нужно сделать директорию для файлов-устройств отвечающих за данную VG:

            mkdir /dev/vgnn

                cd /dev/vgnn

Затем нужно создать необходимые файлы устройств:

                mknod /dev/vgnn/group c 64 0xNN0000

В качестве старшего номера устройства всегда нужно использовать 64, 0xNN0000 является младшим номером устройств и NN представляет собой уникальный среди всех VG номер. Теперь можно приступать к созданию VG:

            vgcreate /dev/vgnn /dev/dsk/c0t6d0 …

Вторым (третьим, четвертым …) аргументом этой команды должен быть файл-устройство блочного типа соответствующего physical volume который не является членом какойто из существующих VG.

Создание Logical Volume.

               

lvcreate /dev/vgNN

После чего появится блочные и символьные файлы устройств  /dev/vgNN/lvoln и /dev/vgNN/rlvoln. LVM сам выберет подходящий номер n. Для создания LV с именем отличным от того что создается по умолчанию нужно воспользоваться опцией –n. Данный LV будет иметь нулевой размер, в дальнейшем его можно увеличить. Также указав опцию –L можно создать LV  заранее необходимого размера (в Мб), при этом реальный размер LV будет округлен в большую сторону и кратен целому количеству physical extents.

Задачи котоые можно выполнить только с использованием комманд HP-UX

К ним можно отнести:

·     Расширение LV за счет определенного диска

·     Создание корневой (root) VG и корневого LV

·     Резервное копирование и восстановление конфигурации VG

·     Перемещение данных с одного LVM диска на другой

·     Уменьшение размера LV

Расширение LV за счет определенного диска

Допустим имеется необходимость создать LV на 120Мб, причем первые 60 Мб необходимо взять с одного диска а оставшиеся 60 с другого. Так поступают часто в случаях когда необходимо повысить производительность файловой системы за счет паралельного использования нескольких дисков. Вначале создаем LV нулевого размера:

            lvcreate –n lvol11 /dev/vg00

затем выполняем необходимые расширение ее обьема за счет определенных дисков:

            lvextend –L 60 /dev/vg00/lvol11 /dev/dsk/c0t5d0

            lvextend –L 60 /dev/vg00/lvol11 /dev/dsk/c0t6d0


Создание корневой VG и корневого LV

Корневой VG это VG который используется системой при загрузке. На нем размещается LV содержащий корневую файловую систему, первичный swap и dump области. Ниже приводятся этапы последовательного создания корневого VG. Во-первых создается PV на котором размещается LIF раздел в котором находятся загрузочные утилиты. Для этого в команде pvcreate используется опция -B:

                pvcreate           -B /dev/rdsk/c0t6d0

Создаем корневой LV:

                vgcreate /dev/vgroot /dev/dsk/c0t6d0

               

Помещаем загрузочные утилиты в LIF область VG:

            mkboot /dev/rdsk/c0t6d0

Записываем в LIF область AUTO файл:

                mkboot –a “hpux (;0)/stand/vmunix” /dev/rdsk/c0t6d0

После выполнения всех этих действий корневая VG готова к созданию на ней LV. Корневой LV должен быть самым первым в этой VG, и следовать сразу за boot областью. Это значит что он должен начинаться с нулевого physical extent. Теперь можно переходить к созданию корневого LV, при его создании нужно включить опцию “смежный LV” (-C) и запретить перемещение bad блоков (-r):

            lvcreate –C y –r n –n root /dev/vgroot

            lvextend –L 160 /dev/vgroot/root /dev/dsk/c0t6d0

В конеце необходимо пометить сосзданный LV как корневой:

                lvlnboot –r /dev/vgroot/root

Резервное копирование и свосстановление конфигурации Volume Groups

Для создания резервной копии конфигурации VG нужно воспользоваться командой vgcfgbackup. Пежде чем выполнять эту команду нужно убедится что все LV в данной VG находятся в состоянии available/syncd (для этого можно воспользоваться командой vgdisplay –v). По умолчанию команда vgcfgbackup  сохраняет конфигурационый файл VG под именем /etc/lvmconf/volume_group_name.conf. Это имя можно переопределить задав опцию –f.

                Восстановление конфигурации выполняется командой vgcfgrestore. Перед этим необходимо предварительно деактивировать данную VG командой vgchange. Например:

            vgchange –a n /dev/vg01

            vgcfgrestore –n /dev/vg01 /dev/rdsk/c0t6d0

Выполнение этих команд приведет к восстновлению информации о VG vg01 из файла /etc/lvmconf/vg01.conf . Затем необходимо активировать данную VG:

            vgchange –a y /dev/vg01

Перемещение и переконфигурирование дисков

В жизни могут возникнуть ситуации при которых необходимо:

·     Переместить диск входящий в состав VG на другое положение в пределах системы.

·     Переместить целую VG с одной системы на другую.

Файл /etc/lvmtab содержит информацию о отображении LVM дисков на соответствующие VG. При любых изменениях связанных с дисками и VG в системе этот файл изменяется, однако это не текстовый файл и напрямую его редактировать нельзя. Вместо этого нужно пользоваться программами vgexport и vgimport.

Перемещение диска в системе.

Для перемещения диска в системе на новое место необходимо выполнить следующее:

·     Создать резервную копию конфигурации VG в которую входит диск и данных хранящихся на диске

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21


на тему рефераты
НОВОСТИ на тему рефераты
на тему рефераты
ВХОД на тему рефераты
Логин:
Пароль:
регистрация
забыли пароль?

на тему рефераты    
на тему рефераты
ТЕГИ на тему рефераты

Рефераты бесплатно, реферат бесплатно, курсовые работы, реферат, доклады, рефераты, рефераты скачать, рефераты на тему, сочинения, курсовые, дипломы, научные работы и многое другое.


Copyright © 2012 г.
При использовании материалов - ссылка на сайт обязательна.