![]() |
|
|
Реферат: Автоматизированные технологические комплексы2.4. Блок питания БП-1 Блок питания подключается к промышленной сети переменного токанапряжением 220 или 240V и вырабатывает три стабилизированных напряжения 24V постоянного тока. Эти напряжения используются для питания: 1) блока контроллера БК-1 2) цепей дискретного входа-выхода БК-1 3) цепей аналогового выхода БК-1 4) интерфейсных цепей БК-1 5) цепей аварийного выхода БК-1 6) усилителей БУТ-10 и БУС-10 Кроме того, блок питания БП-1 обеспечивает безразрывность локальной управляющей сети "Транзит" при отказе одного из подключенных к сети контроллеров, а также имеет релейный вход, сигнализирующий об отказе блока контроллера. Блок БП-1 применяется лишь в случае ,когда у потребителя отсутствует приборная сеть с напряжением 24V или когда требуется объединить контроллеры в локальную сеть "транзит". 2.5. Блок усилителей сигналов резистивных датчиков БУС-10 Усилитель БУС-10 преобразует изменение сопротивления резистивных датчиков (термопреобразователей сопротивления, реохордов) в токовый сигнал 0-5мА. Усилитель БУС-10 обеспечивает также настройку начального значения сопротивления (соответствующего нулевому выходному сигналу) и диапазона измерения сопротивления (соответствующего изменению выходного сигнала на 5мА). К блоку БУС-10 по трех проводной схеме могут подключаться как термометры сопротивления ,так и резистивные датчики. Один блок БУС-10 содержит два независимых канала усиления имеющих одинаковую настройку. 2.6. Блок усилителей сигналов низкого уровня и термопар БУТ-10. Усилитель слаботочных сигналов БУТ-10 является связующим узлом между датчиками естественного сигнала и блоком контроллера БК-1 и выполняет следующие функции: 1. преобразование сигнала измерительной информации в унифицированный сигнал постоянного тока 0-5 мА; 2. обеспечивает конфигурацию изменения температуры свободных концов термопары; 3. обеспечивает смещение пути входного сигнала и растяжку диапазона изменения входного сигнала. Один усилитель содержит два независимых канала усиления, рассчитанных на одинаковую термопару и имеющих одинаковую настройку. Усилитель может использоваться и не только для усиления сигнала термопары, но также для усиления напряжения низкого уровня, получаемого от источника Э.Д.С. Вход и выход каждого канала усилителя гальванически связанны, однако между собой и от источника питания каналы гальванически изолированны. Т.к. выход усилителя подключается к гальванически изолированному аналоговому входу контроллера, каждая термопара оказывается гальванически изолированный от других цепей. Технические характеристики блока усилителя сигналов термопар БУТ-10. Табл. 1.4.
Подключение термопар осуществляется с помощью клеммой колодки, находящейся на лицевой панели блока. Питание осуществляется через разъем РП 15-9 от блока питания Усилитель БУТ-10 выполняет следующие функции: 1)преобразовывает сигнал термопары типов ТХА,ТХК,ТВР,ТПП,ТПР в токовый сигнал 0-5 мА; 2)обеспечивает компенсацию термо ЭДС свободных концов термопары; 3)обеспечивает подавление нуля входного сигнала и растяжку диапазона изменения входного сигнала. Один блок БУТ-10 содержит два независимых канала усиления рассчитанных на одинаковую термопару и имеющих одинаковую настройку. 2.7. Блок усилителя БУМ-10 Усилитель БУМ-10 содержит четыре сильноточных герконовых реле типа РПГ-8 с одним замыкающим контактом, контакты которых могут коммутировать постоянное или переменное напряжение. Обмотки реле подключаются к дискретным выходам блока БК-1 либо к другим цепям, при этом для запитки этих обмоток необходимо внешнее напряжение 24V. Усилители БУМ-10 применяются лишь в том случае, когда необходимо коммутировать высоковольтные и сильноточные нагрузки. В зависимости от числа нагрузок в состав одного РЕМИКОНТА Р-130 могут входить несколько блоков БУМ-10 их число указывается в заказе. 2.8. Блок БПР-10 Блок БПР-10 содержит 8 слаботочных реле типа РЭС-54, перекидные контакты которых могут использоваться в цепях переключения, защиты, , сигнализации, блокировки и т.д. Обмотки реле могут подключаться к дискретным выходам болка БК-1 либо и другим цепям, при этом для запитки этих обмоток необходимо внешнее напряжение 24V. В зависимости от требуемого числа реле в состав одного РЕМИКОНТА Р-130 могут входить несколько блоков БПР-10 их число указывается в заказе.
2.9. Блок "шлюза" Шлюз представляет собой микропроцессорное устройство, предназначенное для связи сети "Транзит" с устройствами верхнего уровня управления, а также для связи сетей "Транзит" друг с другом. В состав шлюза входят: 1)блок шлюза БШ-1; 2)блок питания БП-1; 3)пульт настройки ПН-1; 4)клемно-блочный соеденитель КБС-2. При заказе шлюза БШ-1 входит в комплект поставки всегда, наличие остальных изделий определяется картой заказа. Конструктивно блок шлюза БШ-1 полностью соответствует блоку контроллера БК-1 и имеет одинаковые с ним габаритные подсоеденительные размеры, а также способ монтажа. Блок шлюза содержит модуль процессора ПРЦ10, модуль МКП, модуль стабилизации напряжения МСН10. Все эти модули аппаратно идентичны соответствующим модулям, входящим в состав блока контроллера БК-1. Кроме того БШ-1 содержит два новых модуля: модуль интерфейсной связи МИСЗ, с помощью которого шлюз связывается с верхним уровнем управления, модуль лицевой панели ПЛЗ. 2.10. Устройство связи с объектом УСО. К устройствам связи с объектом УСО относятся модули: модуль аналоговых сигналов МАС модуль аналоговых и дискретных сигналов МДА модуль дискретных сигналов МОД Технические характеристики модулей УСО: 1) Погрешность преобразования входных аналоговых сигналов постоянного тока в цифровой двоичный сигнал -0.3% от максимального значения выходного сигнала. 2) Основная погрешность преобразования цифровых двоичных сигналов в выходной аналоговый сигнал сигнал постоянного тока +:-0.5% от максимального значения выходного сигнала. 3) входные аналоговые сигналы Табл. 1.5.
4)выходные аналоговые сигналы Табл. 1.6.
5)дискретные входные сигналы Табл. 1.7.
2.11. Организация внешних соединений. Отдельные блоки изделия РЕМИКОНТ Р-130 имеют розетки штепсельных разьемов РП15 для выполнения соединения между собой и другими устройствами. Потребитель может все внешние цепи подключать непосредственно к этим разьемам . Такой вариант предполагает, что у потребителя имеются собственные клемные сборки, к которым эти внешние устройства подключены. От этих сборок соединения ведутся монтажным проводами, которые припаиваются к вилкам разьемов РП-15. Если у потребителя такие клемные сборки отсутствуют или по условиям монтажа такие соединения недопустимы, используются специальные соеденители, входящие в состав комплекта РЕМИКОНТ Р 130. Межблочный соеденитель МБС применяется для связи приборных цепей блока контроллера с блоком питания. Соеденитель МБС представляет собой отрезок кабеля, заканчивающийся с обеих сторон вилками разьема РП15. Клемно-блочный соеденитель КБС-1 представляет собой отрезок кабеля, с одной стороны которого смонтирована вилка разьема РП-15-9 ,а на другой- одноразрядная клемная колодка на 8 клемм. КБС-1 используется для подключения цепей "под винт" к блокам ,имеющим разъем РП-15-9 (блок питания, усилители). Клемно-блочный соеденитель КБС-2 предназначен для подключения внешних устройств к дискретным выходам блока контроллера. КБС-2 представляет собой отрезок кабеля, с одной стороны которого смонтирована вилка разьема РП-15-9 ,а с другой - трехразрядную клемную колодку на 24 клеммы. Клемно-блочный соеденитель КБС-3 предназначен для подключения "под винт" внешних устройств к аналоговым входам-выходам блока контроллера БК-1. Отличие от КБС-2 заключается в том, что на внутренней стороне клемных колодок распаяны нормирующие резисторы, с помощью которых унифицированные сигналы 0-5мА, 0(4)-20мА, 0-10В преобразуются в сигналы 0-2В. Колодка имеет поле перемычек "под винт", с помощью которых задается диапазон входных сигналов*. Номиналы нормирующих резисторов, установленных в клемно-блочном соеденителе, аналогичны номиналам резисторов РН. Для диапазона 0-20 и 4-20 мА номинал входного резистора одинаков и рассчитан на сигнал 0-20 мА. Настройка на диапазон 4-29 мА осуществляется пользователем программно. 2.12.Сигналы и параметры настройки Не смотря на то ,что выходные сигналы блока контроллера могут лишь двух видов - аналоговые и дискретные, алгоблоки рассчитаны на обработку сигналов ,имеющих большее разнообразие. Это обеспечивается алгоритмами ,связанными с отсчетом реального времен (таймеры, программные задатчики и т.п.) и со счетом числа событий(счетчики), а также тем ,что параметры настройки алгоритмов задаются с помощью сигналов на настроченных входах и имеют с точки зрения формата большое разнообразие. Виды сигналов и параметров Табл. 1.8.
* При контроле аналоговых сигналов в технических единицах разрешающая способность индикации равна (Х100-Х0)/8191 ,но не лучше 0.001; здесь Х100 и Х0 - технические единицы, способствующие стопроцентному и нулевому значениям аналогового сигнала. Аналоговые сигналыАналоговые сигналы формируются на выходах алгоритмов регулирования ,сумматоров, задатчиков, интеграторов и т.п. К аналоговым сигналам относятся параметры настройки, порог срабатывания нуль-органа, уровень ограничения и Т.П. Несмотря на то что входные и выходные сигналы меняются в диапазоне 0...100%, на выходе алгоблоков аналоговый сигнал может меняться в более широком диапазоне -199.9...199.9%. Это позволяет ,например складывать два числа ,каждое из которых 90% и на выходе сумматора получать правленный результат. Временные сигналыВременные сигналы формируются на выходах таймеров, программных задатчиков,одновибраторов и т.п. алгоритмов. К временным сигналам относятся такие параметры настройки , как постоянные времени,протяженность участка, время выдержки и т.п.Конкретная размеренность задается двумя параметрами: диапазоном и масштабом. Табл.1.9.
Численные сигналыЧисленные сигналы - сигналы на выходах счетчиков и других алгоритмов, работа которых связанна со счетом событий. Числовыми могут быть и параметры настройки, например: число может задать граничное значение сигнала на выходе счетчика, номер этапа к которому должна перейти логическая программа. Дискретные сигналыДискретные сигналы обычно обрабатываются логическими алгоритмами и алгоритмами связанными с переключением сигналов. Дискретными могут быть и параметры настройки. Например, дискретные сигналы в алгоритме задания определяют, должна ли выполняться статическая балансировка. Масштабный коэффициентМасштабный коэффициент - это параметр настройки ряда алгоритмов, где требуется маштабирование, Этот коэффициент используется в алгоритмах аналогового ввода и вывода, в алгоритме суммирования с масштабиророванием и т.п. Коэффициент пропорциональностиКоэффициент пропорциональности применяется в основном в алгоритмах регулирования в качестве параметра настройки. Скорость изменения аналоговых сигналовСкорость изменения аналоговых сигналов - это параметр настройки , задающий , например, скорость изменения сигнала при динамической балансировки или ограничении скорости в алгоритме "Ограничение скорости". 3. Функциональные возможности. Регулирующий контроллер РЕМИКОНТ Р-130 является программируемым устройством. При подготовке к работе в нем программным путем создается структура, которая описывает информационную организацию контроллера и характеризует его как звено системы управления, получившая название виртуальной <кажущейся> - т.е. не существующая как физическое тело. Эта виртуальная структура реализуется с помощью как аппаратных , так и программных средств. 3.1. Виртуальная структура. Основным преимуществом микропроцессорных средств автоматического управления и регулирования является программируемость. Микропроцессорный контроллер по сути является миниатюрной электронной вычислительной масшиной(ЭВМ),решающей конкретную задачу. Как и ЭВМ контроллер имеет порты ввода и вывода информации и арифметическо-логическое устройство (алгоритмические блоки) для ее обработки. При подготовке контроллера к работе в него вводится программа в которой определяются порты ввода - вывода информации , а также алгоритм его обработки. Таким образом, как бы создается структурная схема . Рис.1.1.
Особенность заключается в том, что эта схема существует не в физическом смысле (в реальности), а на уровне программы, такие структурные схемы получили название виртуальных-кажущихся. Для того чтобы изменить структуру ничего не надо отключать , переключать. Достаточно ввести новую программу с новой структурной связью и алгоритмом обработки. Виртуальная структура. Виртуальная (кажущаяся) структура описывает информационную организацию контроллера и характеризует его как звено системы управления. Часть виртуальной структуры реализуется с помощью аппаратных средств, а часть - программно. Все программное обеспечение виртуальной структуры хранится в ПЗУ и пользавателю недоступно, независимо от реализации элементов виртуальной структуры. Элементы виртуальной структуры. 1. Аппаратура ввода-вывода информации. 2. Аппаратура оперативного управления и портом. 3. Аппаратура интерфейсного канала. 4. Алгоритмические блоки. 5. Библиотека алгоритмов. Аппаратура ввода-вывода информации. Контроллер предназначен для обработки сигналов двух видов: 1. Аналоговых 2. Дискретных. Регулирующие воздействия могут выдаваться на вход как в аналоговой так и в дискретной форме. При этом дискретные (импульсные) сигналы формируются программным путем и поступают к исполнительным механизмом через дискретные выходы. Таким образом при обработке аналоговых сигналов осуществляется двойное преобразование : аналого-цифровое на входе и цифро-аналоговое на выходе Внешние цепи подключаются к контроллеру через два независимых канала А и Б. При этом контроллер может обрабатывать сигналы группы А или сигналы обеих групп. При алгоритмической обработке сигналы групп А и Б могут "замешиваться" в одни общий массив информации. Все аналоговые и дискретные входы и выходы контроллера полностью универсальны и не привязаны к каким-либо функциям контроллера. Привязка входов и выходов осуществляется пользователем и реализуется в процессе программирования. Аппаратура оперативного управления и настройки. Органы контроля и управления блоком контроллера располагаются на передних панелях и включают в себя цифровые и светодиодные индикаторы, для отображения оперативной информации, и набором клавиш. Этими органами пользуется оператор ведущий технологический процесс. Вид лицевой панели зависит от модели контроллера Пульт настройки -это инструмент оператора -наладчика. С его помощью осуществляется выбор алгоблоков и алгоритмов обработки информации, а также создается виртуальная структура. Пульт настройки позволяет контролировать промежуточные значения сигналов внутри виртуальной структуры. Аппаратура интерфейсного канала. Каждый контроллер снабжен интерфейсом для связи с внешними устройствами (управляющей вычислительной машиной и т.п.),имеющими приемо-передатчик преобразующими передаваемую информацию в виде последовательного кода (биты) в параллельный код (байты).Обмен информацией осуществляются только в цифровой форме. Алгоритмические блокиВ исходном состоянии алгоритмические блоки как физическое устройство отсутствуют и ни какие функции по обработке сигналов контроллером не выполняются. Они появляются только тогда , когда в процессе технологического программирования в процессор записывается алгоритм (программа) обработки сигналов. Библиотека алгоритмовКонтоллер содержит обширную библиотеку алгоритмов (программ),обработки информации достаточную для реализации сравнительно сложных задач автоматического регулирования и программного управления. Помимо алгоритмов автоматического регулирования и логико-программного управления в библиотеке имеется большой набор алгоритмов статического, математического, логического и аналого-дискретного преобразования сигналов. 3.2. Общие свойства алгоритмов и алгоблоков. Входы-выходы алгоритмаВ общем случае алгоритм обработки информации характеризуется входными и выходными величинами и может быть представлены в виде. Рис. 1.2.
При этом в алгоритме различают два вида входов: а) сигнальные – по которым подается информация подлежащая обработке; б) настроечные - определяющими параметры настройки алгоритмов. Так, например, алгоритм интегрирования входного сигнала по времени может представлен в виде . Рис. 1.3.
Число входов и выходов алгоритма не фиксируется и определяется, в первую очередь, алгоритмом настройки. Число входов любого алгоритма не может превышать 99,а число выходов 26.В частном случае алгоритм может не иметь входов и выходов. Все входе и выходы могут подвергаться конфигурированию. В ряде случаев, некоторые алгоритмы имеют неявные входы и выходы, имеющие специальное назначение и недоступные для конфигурирования. К таким алгоритмам относят алгоритмы ввода-вывода, приемо-передачи оперативного управления. |
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() |
|
Рефераты бесплатно, реферат бесплатно, курсовые работы, реферат, доклады, рефераты, рефераты скачать, рефераты на тему, сочинения, курсовые, дипломы, научные работы и многое другое. |
||
При использовании материалов - ссылка на сайт обязательна. |