![]() |
|
|
Реферат: СтатистикаПоскольку минимальное значение капитала (770 млн. руб.) больше нижней границы интервала (643 млн. руб.), а максимальное значение (1045 млн. руб.) меньше верхней границы (1117 млн. руб.), то можно считать, что в данной совокупности «аномальных» наблюдений нет. Проверка однородности осуществляется по коэффициенту вариации: Т.к. 5. Построение ряда распределения Для построения ряда распределения необходимо определить число групп и величину интервала. Для определения числа групп воспользуемся формулой Стерджесса:
Величину интервала определим по формуле:
Нижнюю границу первого интервала принимаем равной минимальному значению
факторного признака, а верхнюю границу каждого интервала получаем прибавлением
к нижней границе величины интервала. По каждой группе подсчитываем число
банков, за
Среднюю по ряду распределения рассчитываем по средней арифметической взвешенной:
Мода – это наиболее часто встречающееся значение признака. Для интервального ряда мода определяется по формуле:
Модальный интервал определяется по наибольшей частоте. Для данного ряда наибольшее значение частоты равно 10, т.е. это будет интервал 770 – 825, тогда значение моды: Медиана – значение признака, лежащее в середине ранжированного (упорядоченного) ряда распределения. Номер медианы определяется по формуле:
т.к. медианы с дробным номером не бывает, то полученный результат указывает, что медиана находится посередине между 13-й и 14-й величинами совокупности. Значение медианы можно определить по формуле:
По накопленной частоте Наряду со средними величинами большое значение имеет изучение отклонений от средних, при этом представляет интерес совокупность всех отклонений, т.к. от их размера и распределения зависит типичность и надежность средних характеристик. Наиболее простым из этих показателей является показатель размаха вариации, который рассчитывается по формуле:
Размах вариации характеризует разброс только крайних значений, поэтому он не может быть достоверной характеристикой вариации признака. Распределение отклонений можно уловить, определив все отклонения от средней, для этого можно определить среднее арифметическое (линейное) отклонение, которое рассчитывается по формуле:
Среднее линейное отклонение, как меру вариации признака применяют крайне редко. Чаще отклонения от средней возводят в квадрат и из квадратов отклонений вычисляют среднюю величину. Полученная мера вариации называется дисперсией, а корень квадратный из дисперсии, есть среднее квадратическое отклонение, которое выражает абсолютную меру вариации и вычисляется по формуле:
По рассчитанным показателям достаточно трудно судить о степени вариации признака в совокупности, т.к. их величина зависит от размера значений признака, поэтому более объективной характеристикой будет коэффициент вариации, который рассчитывается по формуле:
Т.к. Для характеристики дифференциации банков по величине капитала, рассчитаем коэффициент фондовой дифференциации по формуле:
Т.к. 10% от 26 будет 2,6, то можно взять значения трех банков, имеющих самые большие и самые меньшие значения капитала:
Тогда:
Следовательно, средняя из 10% максимальных значений в 1,3 раза превышает среднюю из 10% минимальных значений. 6. Определение характеристик генеральной совокупности По условию задания предполагается, что исходные данные по 26 банкам являются 5% выборкой из некоторой генеральной совокупности. Для определения характеристик генеральной совокупности необходимо: · определить характеристики выборочной совокупности: среднюю величину; дисперсию; долю единиц, обладающих значением изучаемого признака; дисперсию доли; · рассчитать ошибки выборки; · распространить результаты выборки на генеральную совокупность путем определения доверительных интервалов, в которых с определенной вероятностью можно гарантировать нахождение характеристик генеральной совокупности. Для определения характеристик выборочной совокупности, воспользуемся результатами расчетов п.5 задания, в котором определили, что: средняя величина
капитала составляет: дисперсия равна:
Доля банков, у которых капитал превышает среднюю величину, для выборочной
совокупности определяется по первичным данным таблицы №1. Число таких
банков равно 13, тогда их доля Дисперсия доли рассчитывается, как произведение значения доли на
дополнение ее до единицы, т.е.: Для расчета ошибок выборки можно воспользоваться формулами для бесповторного отбора, т.к. из условия задания можно определить численность генеральной совокупности. Тогда, средняя ошибка выборки для средней величины:
Т.к. Предельная ошибка для средней величины рассчитывается по формуле:
Коэффициент доверия При заданной вероятности Доверительный интервал для средней величины генеральной совокупности:
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() |
|
Рефераты бесплатно, реферат бесплатно, курсовые работы, реферат, доклады, рефераты, рефераты скачать, рефераты на тему, сочинения, курсовые, дипломы, научные работы и многое другое. |
||
При использовании материалов - ссылка на сайт обязательна. |