на тему рефераты
 
Главная | Карта сайта
на тему рефераты
РАЗДЕЛЫ

на тему рефераты
ПАРТНЕРЫ

на тему рефераты
АЛФАВИТ
... А Б В Г Д Е Ж З И К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я

на тему рефераты
ПОИСК
Введите фамилию автора:


Реферат: Движение в пространстве, пространство движения и геометрический образ движения: опыт топологического подхода


Реферат: Движение в пространстве, пространство движения и геометрический образ движения: опыт топологического подхода

Аспирант О.С. Васильев, доктор педагогических наук Н.Г. Сучилин, Российский государственный университет физической культуры, спорта и туризма, Москва

…гимнастика, этот прекрасный и странный вид спорта,  сделавший своим предметом движения,  не известные в повседневном, "разумном" обиходе

<…>

подобно тому, как музыка слагается из звуков,  не известных живой природе…

Ю.К. Гавердовский [18]

Введение. Методология науки и ее предмет в прошлом веке претерпели существенные изменения. Согласно известному изречению W. Weaver (1948), классическая наука имела дело либо с организованной простотой, либо с неорганизованной сложностью, тогда как предметом современной науки является организованная сложность. Как следствие этого господствующая в классической науке парадигма Декарта и Галилея, требующая расчленения проблемы на возможно большее число элементарных составных частей и изучения каждой из них в отдельности, была элиминирована системным подходом, где в качестве основного методологического принципа выступает принцип целостности.

Современный постнеклассический этап развития научной мысли характеризуется становлением новой мировоззренческой парадигмы: на смену идеям борьбы противоположностей выступают интегративные концепции и принципы взаимодополнения; на смену аристотелевой логике - системы многозначной и нечеткой логики. Одним из первых отсутствие причинно-следственной детерминированности окружающего нас мира осознал Ангелиус Силезиус (1624-1677): "Роза есть без "почему"; она цветет потому, что она цветет, не обращая на себя внимания, не спрашивая, видят ли ее".

От принципов однозначности и детерминизма классического мировоззрения (классическая механика) современная научная мысль подошла к многозначности; от измеримости к неизмеримости и несоизмеримости, к рассмотрению открытых динамических систем, неустойчивых и переходных процессов, явлений самоорганизации, хаоса, флуктуации, бифуркации и неустойчивости. Предложенный Н. Бором (1927) принцип дополнительности о применении на определенном этапе познания взаимоисключающих понятий и представлений давно вышел за рамки квантомеханических представлений. Необходимость взаимосвязи и единого рассмотрения объекта, субъекта и средства познания также преодолевает рамки квантомеханических подходов. Принцип неопределенности В. Гейзенберга (1927) фактически ознаменовал переход от классического лапласовского механистического детерминизма к динамическому вероятностному детерминизму и индетерминизму. Мир стал видеться не как скопление объектов, а как система сложных системных взаимоотношений частей и единого целого. Последние достижения в системном анализе, опирающиеся на теорему К. Геделя о неполноте (1931), показывают невозможность выбора наилучшей системы, структуры, конструктивного пространства для непротиворечивого описания поведения сложного объекта, каким является движение человеческого тела.

Говорить о подчинении природы известным на современном этапе развития научной мысли законам физики уже не приходится - слишком много (и часто взаимоисключающих) моделей описания окружающего нас мира предлагает современная наука. Тем не менее современная наука строится на гипотезе о наличии внутренней упорядоченности и закономерностей в явлениях природы, к которым и относится движение человека. Поиск этой внутренней упорядоченности природы и является одной из основных целей современной науки.

Разрозненные эмпирические геометрические представления древности постепенно оформились в стройные физико-математические теории, но фундаментальный вопрос о взаимосвязи идеального и материального до сих пор остался без ответа. Чему присущи геометрические структуры: природе или нашим представлениям о ней, самому движению в пространстве или геометрическому образу этого движения? Уверенность в том, что геометрия внутренне присуща природе, а не нашим представлениям о ней, берет начало в греческой философии. С тех пор на протяжении веков окружающее нас пространство рассматривалось как абстрактно-геометрическое.

В новое время с позиций классической физики наше пространство рассматривалось как трехмерное, однородное и изотропное, не зависящее от находящихся в нем материальных тел и подчиняющееся евклидовой геометрии. А время - как однородное и одномерное, то есть как независимое измерение. Такое пространство И. Кант рассматривал как эмпирическую реальность, априорную по отношению к опыту. Пространство у Канта не есть внешний объект чувств: время не есть внутренний, в котором мы воспринимаем вещи и их действия, но формы нашей способности действовать.

Но уже И. Ньютон подразумевал два вида пространства: относительное, с которым люди встречаются путем измерения пространственных соотношений между телами, и абсолютное - пустое вместилище тел, трехмерное евклидово пространство, то есть фактически различал пространство движения и движение в пространстве.

В механике Ньютона на свойства пространства никак не влияло происходящее в нем движение материи; "геометрия" и "динамика" в ньютоновской механике были независимы друг от друга. Глубочайшая идея взаимосвязи и взаимообусловленности движения и пространства принадлежит А. Пуанкаре.

Пространство в релятивистской физике и физике микромира имеет более сложную геометрию, более сложное строение. На смену трехмерному евклидову пространству классической физики пришел четырехмерный континуум пространство-время Германа Минковского: пространство само по себе, как и время само по себе, отошли в прошлое, независимой действительностью является только их единство. Основным открытием теории относительности является, по мнению Генри Маргенау (H. Margenau) то, что геометрия есть продукт деятельности интеллекта. Такому пространству соответствуют построения философа экзистенциальной онтологии М. Хайдеггера, который рассматривал пространство не само по себе, а как производное от бытия.

С позиций современной математики пространство представляет собой логически мыслимую форму или структуру, в которой осуществляются другие формы и те или иные конструкции . В этом смысле различные виды геометрий имеют равные права на существование. Но по отношению к реальному окружающему нас пространству наиболее адекватной оказывается не евклидова, а риманова геометрия. Но так как любое ускоренное движение "нарушает" евклидовость пространства, то можно заключить, что большинство движений в спортивной гимнастике происходит в неевклидовом пространстве.

В современной физике свойства пространства делят на метрические (протяженность и длительность) и топологические (размерность, непрерывность, связность и др.). Топология - это раздел математики, рассматривающий наиболее общие свойства формы объектов, сохраняющиеся при непрерывной деформации. Топология изучает свойства геометрических фигур, "сохраняющихся даже тогда, когда эти фигуры подвергаются таким преобразованиям, которые уничтожают все их и метрические, и проективные свойства", - писали Р. Курант и Г. Роббинс [32]. Если метрические свойства окружающего нас пространства достаточно полно рассмотрены в общей и специальной теории относительности, то исследование топологических свойств окружающего нас пространства пока остается на уровне гипотез.

В микромире привычные представления о пространстве-времени оказываются неадекватными (например, понятие траектории частицы). Возможно, привычные представления об окружающем нас пространстве-времени изменятся в недалеком будущем.

Несмотря на значительные успехи современной научной мысли единого понимания пространства ни философия, ни физика до сих пор не достигли; на сегодняшний день мы имеем лишь разные модели пространства.

Современная биомеханика от аналитической до антропоцентрической основывается на метрических свойствах пространства. Топологические свойства пространства движения - обобщенная форма траектории, связность и др. - являются предметом рассмотрения топологической биомеханики, математический аппарат которой настолько сложен, что … до сих пор еще не разработан. Ведь даже классическая задача "трех тел" не имеет аналитического решения. В какой-то степени к пониманию топологических концепций движения подошли механика сплошной среды и дифференциальная геометрия.

Современные компьютерные технологии позволяют визуализировать сложнейшие абстрактные геометрические объекты и пространственные взаимодействия. Однако визуализировать математические построения можно и не только посредством вычислительной техники. При выполнении двигательных задач в сложнокоординированных видах спорта, и прежде всего в гимнастике, спортсмен решает биомеханические проблемы такой сложности, которые пока недоступны современной аналитической науке. Выполнение гимнастической комбинации является, по сути дела, визуализацией решения такой двигательной задачи, которая не по силам современной вычислительной технике. А ведь еще Карл Фридрих Гаусс ставил вопрос об экспериментальной проверке положений геометрии. А если, по мнению В.И. Арнольда [4], "математика - это часть физики, являющаяся, как и физика, экспериментальной наукой", то можно предположить, что современная спортивная гимнастика как вид визуализации сложных движений в пространстве в недалеком будущем станет разделом экспериментальной геометрии.

История развития концепций пространства движения человеческого тела

Разрозненные представления о пространстве движения человеческого тела начали постепенно оформляться в эпоху Ренессанса. Перу Леонардо да Винчи (1452 - 1519) принадлежит одно из первых исследований по искусству движения - утерянный "Трактат о живописи и человеческих движениях".

Вопросами искусства движения занимались французский педагог Франсуа Дельсарт (1811 - 1871), физиолог и педагог Жорж Демени (1850 - 1917), профессор Женевской консерватории Жак Далькроз (1865 - 1914), танцовщица Айседора Дункан (1878 - 1927) и др.

Однако существенный прорыв в понимании пространства движения произвел хореограф Рудольф Лабан (1879 - 1958). Хореография отражает наиболее общие законы движения человеческого тела; техника - структуру исполнения движения в пространстве. Применив математический метод анализа для обоснования универсальных закономерностей движения человеческого тела, Р. Лабан, по сути, произвел настоящую революцию в теории пространства, показав что пространство - "это не пустота, которую надо заполнить, а некая материальная реальность, которую можно лепить и формировать посредством различной архитектоники движений" [21]. Он одним из первых предпринял попытку исследовать формы движения не только в искусстве, но и в природе.

Независимо от Р. Лабана по структурному пути (или конструктивному в отличие от дескриптивного) рассмотрения пространства движения пошли наши отечественные ученые В.М. Дьячков, И.П. Ратов, В.Т. Назаров, Ю.К. Гавердовский, Н.Г. Сучилин, Р.А. Пилоян и др. Рассматривая структурную сложность движения, они напрямую подошли к рассмотрению структуры пространства движения без привнесения в него излишней психологической субъективности.

По нейропсихофизиологическому пути пошли Н.А. Бернштейн [6], Д.Д. Донской [25], В.Н. Селуянов и другие ученые, которые утверждали, что выполнение двигательного действия приводит к формированию в сознании двигательного образа и так называемой "программы движения". При реализации программы движение, как правило, имеет отклонение от заданной цели движения (образа). "Образ действия в сознании человека как отражение действительности играет роль регулятора двигательного акта. Без предвидения и контроля невозможны ни постановка цели, ни ее достижение" [27]. При повторном выполнении программы вносятся коррективы; "действие не складывается, не составляется из готовых частей, а дифференцируется, структурируется в процессе повторных попыток" [27].

Системные (конструктивные ) обобщения нейропсихофизиологического пути нашли свое продолжение в становлении и развитии концепций антропоцентрической биомеханики [25 - 27, 24, 0, 31, 20 и др.]. Структура движения в данной концепции анализируется с модельных проектно-смысловых ценностно ориентированных представлений об условиях, требованиях и средствах достижения целеполагаемого результата и связана с интегральными свойствами индивидуальностей спортсмена и тренера [20]. Смысловое проектирование двигательного действия представлено С.В. Дмитриевым формулой "от модели объекта - к модели проекта" [24].

Несмотря на многообразие различных взглядов на характер движения человеческого тела в пространстве исторически сформировалось два основных фундаментальных подхода к данной проблеме: кибернетический и структурный .

В кибернетическом подходе движение анализируется с позиций динамических систем с обратной связью. Основные результаты в этой области принадлежат Н.А. Бернштейну, П.К. Анохину и их последователям.

В структурном подходе рассматривается прежде всего структура, пространственная форма самого движения. Существенный вклад в разработку этого подхода внесли исследования Ю.К. Гавердовского [16 - 19, 45 - 55]. Он построил функциональную классификацию гимнастических упражнений, разработав ряд совершенно новых гимнастических элементов с четкими физическими характеристиками и а вместе со своими учениками развивает идею функциональной взаимозависимости двигательных действий.

Дальнейшее развитие структурного подхода

Классическая биомеханика (в силу ограничения скорости перемещения и заданных границ человеческого тела) рассматривает движение человеческого тела в однородном изотропном евклидовом пространстве. Но еще в начале XX века, изучая циклограмму ударов молотком по зубилу или ударов кузнечной кувалдой, Н.А. Бернштейн назвал полученные рисунки движения "паутиной на ветру" и предложил описывать живое движение не метрическими, а топологическими категориями. Стало понятно, что законами классической механики движение не исчерпывается, не исчерпывается движение и в рамках классической биомеханики.

Современное естествознание рассматривает как общие свойства пространства, проявляющиеся в единстве метрических и топологических свойств, так и локальные пространственные свойства, таким единством уже не обладающие. Пространство движения имеет иные топологические свойства, нежели евклидово пространство. Фундаментальное противоречие возникает в силу несовпадения метрических и топологических свойств пространства движения, в топологическом противоречии между движением в пространстве и пространством движения.

Отечественная антропоцентрическая биомеханика (С.В. Дмитриев, Д.Д. Донской) одной из первых подошла к признанию необходимости рассматривать спортивные движения как "системно-структурные комплексы ". Кинематическая структура - это не сами движения; это законы взаимодействия движения в пространстве и во времени. Они отражаются на траекториях, длительности, темпе, ритме, скоростях, ускорениях, проявляются в их величинах, изменениях и соотношениях. Но, как справедливо указывал Д.Д. Донской [25], это не сами характеристики движения. Двигательное действие следует рассматривать, не расчленяя на отдельные фазы, а как целостную когерентную структуру. Н.А. Бернштейн отметил, что движение никогда не реагирует на деталь деталью: на изменение детали движение реагирует системно. Целостная когерентная структура согласованных пространственных характеристик (траекторий, дуг, углов) приводит к пониманию целостности состава движения, что дает, по мнению Д.Д. Донского [26], внешнюю картину действия в целом, определяет пространственную форму движения .

Антропоцентрическая биомеханика, рассматривая влияние среды на движение человеческого тела, вышла на осознание роли топологии окружающего локального пространства: пространство в силу наличия оппозиции человек-среда при сохранении той же метрики становится топологически сложно устроенным. В духе антропоцентрической парадигмы естественно искать ключ к пониманию сложности топологии пространства человек-среда в понимании топологии самого пространства движения.

Пространственно-координационная система - это определенное топологическое пространство допустимых в данном виде физической активности движений с заданным скоростно-силовым потенциалом. Пространственно-координационная система, пространственная форма движения и соответствующий им вид физической активности (вид физической культуры) суть три проекции, три взгляда на один и тот же феномен. Так, к примеру, художественная гимнастика является не набором средств и методов, а определенным типом пространственно-координационной системы, определяющим, в свою очередь, этот набор средств и методов для ее "заполнения". Аналогичным способом определяются и другие виды физической активности и культуры движения.

Важно отметить, что пространственно -координационная система определяет не только известные движения в данном виде физической активности (виде спорта), но и еще не известные или не применяемые движения.

Структурно-конструктивный биомеханический подход в своем развитии становится, по сути, топологическим подходом.

Все многообразие видов физической активности различается в основном пространством движения , которое определяется его базовой техникой (школой движения). Верно и обратное: по пространственной форме движения (по его кинематической структуре) можно восстановить основную базовую технику данного вида физической активности.

Так как базовая техника однозначно определяет соответствующий ей вид физической активности, то, естественно, встает вопрос о полноте и непротиворечивости набора средств базовой техники для данного вида физической активности. Полнота системы базовой техники означает, что указанный набор базовой техники описывает все движения, присущие данному виду двигательной активности, то есть всё пространство движения. Непротиворечивость набора базовой техники означает, что данный набор не порождает взаимопротиворечивые движения и действия в системе данной школы движений.

Мы полагаем, что существует два вида пространства движения: абстрактное пространство движения, присущее данному виду физической активности, и конкретное пространство движения, отражающее анатомо-физиологические особенности конкретного человека.

Человеческое тело в силу наличия естественных изгибов в позвоночном столбе при принятии основной стойки "ориентировано нелинейно". Эта "нелинейность" с учетом распределения мышечного тонуса и определяет рабочую осанку (как обобщенную совокупность динамических осанок), принятую в каждом конкретном виде физической активности. Рабочая осанка определяет и отражает структурную (топологическую) особенность пространства движения, присущую данному виду физической активности. Понимание топологической структуры изучаемого движения важно и при обучении сложнокоординированным действиям, например техническим приемам.

Закон положительного переноса двигательных навыков выполняется только на изоморфных, то есть одинаковых по форме, структурах движения. То есть последующее разучиваемое движение должно быть по своей структуре топологически "совместимым" со структурой "наработанного" двигательного навыка.

Так, хореография как вид культуры движения вносит существенные топологические особенности в пространство движения художественной гимнастики как вида физической активности.

Овладение пространственной формой движения является целью тренировочного процесса, то есть геометрический образ движения первичен по отношению к реализующей ее функциональной системе индивида (согласно П.К. Анохин у) [2]). Тренировочный процесс должен строиться не только по принципам воспитания физических качеств, искусственно и стереотипно формирующих функциональные системы, но и по принципу развития индивидуальных, соответствующих геометрическому образу движения функциональных систем. В настоящее время представляется возможным достаточно адекватно оценить необходимые для выполнения данного движения физические качества спортсмена, но оценить функциональную систему, обеспечивающую выполнение этого движения, при уровне существующих технологий мы еще не можем.

Представляется, что развитие топологических подходов к движению, к геометрическому образу движения, к пространственной форме движения является одним из перспективных направлений развития биомеханики в условиях новой постнеклассической картины мира.

Строго говоря, пространство движения следует рассматривать не только с кинематических позиций, но и с динамических, то есть рассматривать не только траектории движения, но и силы, порождающие эти траектории и функционально от них зависящие . ДляЕпостроения такого динамического (силового) пространства нужно ввести пространственно-силовую метрику. В современной механике пока рассматриваются только чисто геометрические пространства (без учета распределения сил).

Существенной особенностью окружающего нас пространства является "отсутствие у интервалов физического пространства внутренне присущей им метрики", - писал А. Грюнбаум [23], что "лишает силы ньютоновское утверждение о том, что пустому пространству и времени внутренне присуща определенная метрика" [23]. То есть окружающее нас пространство метрически аморфно вне зависимости от введенной системы координат. А раз так, то мы вправе рассматривать различные альтернативные виды метризации (не только евклидовы). Так, например, метрически-динамической метрикой пользовались еще хазары, используя для этого меру усилий, которые человек должен затратить для достижения цели - фарсах (М.И. Артамонов, Л.Н. Гумилев). Длина фарсаха зависела от рельефа местности и от направления, то есть была асимметричной (Г.Е. Шишкина).

Возможно, что рассмотрение движения в силовом фарсах-пространстве поможет значительно продвинуться в осознании сложности движения.

Особенности симметрии пространства движения

В явлениях природы есть формы и ритмы, недоступные глазу созерцателя, но открывающиеся глазу аналитика. Эти формы и ритмы мы называем физическими законами.

Р. Фейман

Симметрия, являясь одним из фундаментальных свойств пространства, означает инвариантность структуры математического (или физического) объекта относительно некоторой группы его преобразований. Э. Галуа одним из первых предложил классифицировать алгебраические уравнения по их группам симметрии. Ф. Клейн начал рассматривать идею симметрии как принцип построения и сравнений различных геометрий.

Если законы, параметры, описывающие поведение системы, при заданном преобразовании не меняются, то говорят, что эти законы симметричны (инвариантны) относительно данных преобразований. Физические законы, рассматриваемые в евклидовом пространстве (что справедливо и в псевдоевклидовом четырехмерном пространстве-времени Минковского), обладают следующими видами симметрии:

1) симметрия относительно сдвигов в пространстве (эквивалентность всех точек пространства), то есть отсутствие выделенных точек в пространстве - однородность пространства (то же и для времени);

2) симметрия относительно поворотов в пространстве (эквивалентность всех направлений в пространстве), то есть отсутствие выделенных направлений в пространстве - изотропность пространства.

Согласно теореме Э. Нетер (1918) свойства симметрии физической системы напрямую соответствуют законам сохранения физических величин. Под симметрией понимается не симметрия пространства как такового, а симметрия физического объекта, системы в пространстве . Поэтому свойства симметрии локального пространства движения будут отличными от свойств симметрии всего пространства. Непрерывными преобразованиями в пространстве-времени, оставляющими инвариантными уравнения движения, являются сдвиг по времени и в пространстве, трехмерное вращение, преобразование Лоренца, которые соответственно порождают законы сохранения энергии, импульса, момента импульса и закон сохранения лоренцева момента (движение центра масс релятивистской системы).

Основной проблемой, возникающей в современной классической биомеханике, является не столько трудность создания адекватной биомеханической модели какого-либо достаточно сложного движения, сколько решение системы уравнений такой модели. Причем аналитическое решение уравнения движения в ньютоновском формализме часто оказывается просто невозможным, а приближенные решения дают высокую неустойчивость.

Страницы: 1, 2


на тему рефераты
НОВОСТИ на тему рефераты
на тему рефераты
ВХОД на тему рефераты
Логин:
Пароль:
регистрация
забыли пароль?

на тему рефераты    
на тему рефераты
ТЕГИ на тему рефераты

Рефераты бесплатно, реферат бесплатно, курсовые работы, реферат, доклады, рефераты, рефераты скачать, рефераты на тему, сочинения, курсовые, дипломы, научные работы и многое другое.


Copyright © 2012 г.
При использовании материалов - ссылка на сайт обязательна.