![]() |
|
|
Реферат: Синтез оптимальных уравненийРеферат: Синтез оптимальных уравненийБЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТМеханико-математический факультет Кафедра теоретической механики и робототехники Курсовая работаТема: Синтез оптимальных уравненийСтудента 3-го курса 13 группы Павловского Сергея Александровича Научный руководитель Лютов Алексей Иванович Минск 2001г.ОГЛАВЛЕНИЕГ л а в а I. Введение................................................................................................ 2 § 1. Задача об оптимальном быстродействии.................................................... 2 1.Понятие об оптимальном быстродействии.................................................. 2 2.Задача управления........................................................................................ 3 3.Уравнения движения объекта....................................................................... 5 4.Допустимые управления............................................................................... 6 § 2. Об основных направлениях в теории оптимальных процессов.................. 7 5.Метод динамического программирования.................................................. 7 6.Принцип максимума..................................................................................... 9 § 3. Пример. Задача синтеза............................................................................... 12 7.Пример применения принципа максимума............................................... 12 8.Проблема синтеза оптимальных управлений............................................ 14 Г л а в а II. Линейные оптимальные быстродействия..................................... 15 § 4 Линейная задача оптимального управления............................................... 15 9.Формулировка задачи................................................................................ 15 10.Принцип максимума................................................................................. 16 11.Принцип максимума — необходимое и достаточное условие оптимальности............................................................................................... 17 12.Основные теоремы о линейных оптимальных быстродействиях........... 18 § 5. Решение задачи синтеза для линейных задач второго порядка................ 18 13.Упрощение уравнений линейного управляемого объекта...................... 18 Г л а в а III. Синтез оптимальных управлений для уравнения второго порядка.......................................................................................................... 20 § 6. Решение задачи синтеза в случае комплексных собственных значений...... 20 14.Задача синтеза для малых колебаний маятника...................................... 20 Список используемой литературы....................................................................... 23 Г л а в а I ВВЕДЕНИЕ Управляемые объекты прочно вошли в нашу повседневную жизнь и стали обиходными, обыденными явлениями. Мы видим их буквально на каждом шагу: автомобиль, самолёт, всевозможные электроприборы, снабжённые регуляторами (например, электрохолодильник), и т. п. Общим во всех этих случаях является то, что мы можем «управлять» объектом, можем в той или иной степени влиять на его поведение. Обычно переход управляемого объекта из одного состояния в другое может быть осуществлён многими различными способами. Поэтому возникает вопрос о выборе такого пути, который с некоторой (но вполне определённой) точки зрения окажется наиболее выгодным. Это и есть (несколько расплывчато сформулированная) задача об оптимальном управлении. § 1. Задача об оптимальном быстродействии 1.
Если мы будем рассматривать движение автомобиля по плоскости (а не по прямой), то фазовых координат будет четыре (две «географические» координаты и две компоненты скорости), а управляющих параметров – два (например, сила тяги двигателя и угол поворота руля). У летящего самолёта можно рассматривать шесть фазовых координат (три пространственные координаты и три компоненты скорости) и несколько управляющих параметров (тяга двигателя, величины, характеризующие положение рулей высоты и направления, элеронов).
Управляемый объект, о котором только что шла речь, в теории автоматического управления принято изображать так, как это показано на рис. 2. Величины u1,u2,…,ur (управляющие параметры) часто называют также «входными переменными», а величины x1, x2,…,xn (фазовые координаты) – «выходными переменными». Говорят ещё, что «на вход» объекта поданы величины u1,u2,…,ur, а «на выходе» мы получаем величины x1, x2,…,xn. Разумеется, на рис. 2 показано лишь условное обозначение управляемого объекта и никак не отражено его «внутреннее устройство», знание которого необходимо, чтобы выяснить, каким образом, зная управляющие функции u1(t),u2(t),…,ur(t), можно вычислить изменение фазовых координат x1(t),x2(t),…,xn(t). Величины u1,u2,…,ur удобно считать координатами некоторого вектора u=(u1,u2,…,ur), также называемого управляющим параметром (векторным). Точно так же величины x1, x2,…,xn удобно рассматривать как координаты некоторого вектора (или точки) x=(x1, x2,…,xn) в n – мерном пространстве с координатами x1, x2,…,xn. Эту точку называют фазовым состоянием объекта, а n – мерное пространство, в котором в виде точек изображаются фазовые состояния, называется фазовым пространством рассматриваемого объекта. Если объект таков, что его фазовое состояние характеризуется только двумя фазовыми координатами x1, x2 (см. рис. 1), то мы будем говорить о фазовой плоскости. В этом случае фазовые состояния объекта изображаются особенно наглядно.
Пару векторных функций (u(t), x(t)), т. е. управление u(t) и соответствующую фазовую траекторию x(t), мы будем называть в дальнейшем процессом управления или просто процессом.
2. Задача управления. Часто встречается следующая задача, связанная с управляемыми объектами. В начальный момент времени t0 объект находится в фазовом состоянии x0; требуется выбрать такое управление u(t), которое переведёт объект в заранее заданное конечное фазовое состояние x1 (отличное от x0; рис. 5). При этом нередко бывает, что начальное состояние x0 заранее не известно. Рассмотрим один из наиболее типичных примеров. Объект должен устойчиво работать в некотором режиме (т. е. находиться в некотором фазовом состоянии x1). В результате тех или иных причин (например, под воздействием неожиданного толчка) объект может выйти из рабочего состояния x1 и оказаться в некотором другом состоянии x0. При этом точка x0, в которую может попасть объект, заранее не известна, и мы должны уметь так управлять объектом, чтобы из любой точки x0 (или хотя бы из точек x0 достаточно близких к x1) вернуть его в рабочее состояние x1 (рис. 6).
Однако в современных условиях высокого развития техники оператор зачастую не может успешно справиться с этой задачей ввиду сложности поведения объекта, большой быстроты протекания процессов и т. п. Поэтому чрезвычайно важно создать такие приборы, которые сами, без участия человека, управляли бы работой объекта (например, в случае выхода объекта из рабочего состояния возвращали бы его в это рабочее состояние). Такие приборы («регуляторы», «автоматические управляющие устройства» и т. п.) сейчас очень распространены в технике, их изучением занимается теория автоматического управления. Первым устройством этого рода был центробежный регулятор Уатта, сконструированный для управления работой паровой машины (см. рис. 9). Схема этого регулятора показана на рис. 7. В общем случае (рис. 8) на вход регулятора подаются фазовые координаты объекта.
Обычно требуется, чтобы переходный процесс (т. е. процесс перехода из начального фазового состояния x0 в предписанное состояние x1, рис. 5) был в определённом смысле «наилучшим», например, чтобы время перехода было наименьшим или чтобы энергия, затраченная в течение переходного процесса, была минимальной и т. п. Такой «наилучший» переходный процесс называется оптимальным процессом. Термин «оптимальный процесс» требует уточнения, т. к. необходимо разъяснить, в каком смысле понимается оптимальность. Если речь идёт о наименьшем времени перехода, то такие процессы называются оптимальными в смысле быстродействия. Иначе говоря, процесс, в результате которого объект переходит из точки x0 в точку x1 (рис. 5), называется оптимальным в смысле быстродействия, если не существует процесса, переводящего объект из x0 в x1 за меньшее время (здесь и далее предполагается, что x1≠ x0). Разумеется, желательно, чтобы регулятор не просто возвращал объект в рабочее состояние, а делал это наилучшим образом, например, в смысле быстродействия (т. е. возвращал объект в рабочее состояние за кратчайшее время). В связи с этим в теории автоматического управления рассматриваются весьма различные регуляторы. Рассмотрение регуляторов приводит к тому, что уменьшение времени переходного процесса связано с усложнением конструкции регулятора; поэтому, усложняя конструкцию регулятора, можно лишь приближаться к «идеальному», «оптимальному» регулятору, который во всех случаях осуществляет переходный процесс за кратчайшее время. В точности же «оптимального» регулятора, по-видимому, осуществить нельзя. Однако такой вывод является ошибочным, т. к. сейчас уже создали математический аппарат, рассчитывающий такие регуляторы. Можно предполагать, что оптимальные регуляторы будут играть важную роль в технике будущего. 3. Обозначив
скорость движения через x2 (т. е.
положив
Здесь величины x1, x2 являются фазовыми координатами тела G, а величина u – управляющим параметром, т. е. мы имеем объект, схематически изображённый на рис. 11. Уравнения (1.1) представляют собой закон изменения фазовых координат с течением времени (с учётом воздействия управляющего параметра), т. е. представляют собой закон движения фазовой точки в фазовой плоскости. Мы рассмотрели лишь один частный случай, но можно было бы указать целый ряд других примеров, в которых закон движения объекта описывается дифференциальными уравнениями. Чаще всего (см.(1.1)) эти уравнения дают выражения производных от фазовых координат через сами фазовые координаты и управляющие параметры, т. е. имеют вид
где f1, f2,…, fn – некоторые функции, определяемые внутренним устройством объекта. В дальнейшем мы сосредоточим своё внимание именно на таких объектах (рис. 2), закон движения которых описывается системой дифференциальных уравнений вида (1.2). В векторной форме систему (1.2) можно записать в виде
где x ─ вектор с координатами x1,…, xn, u – вектор с координатами u1,…, ur и, наконец, f(x, u) – вектор, координатами которого служат правые части системы (1.2). Разумеется, невозможно решить систему дифференциальных уравнений (1.2) (т. е. найти закон движения объекта), не зная каким образом будут меняться с течением времени управляющие параметры u1, u2,…, ur. Напротив, зная поведение величин u1, u2,…,ur, т. е. зная управляющие функции u1(t), u2(t),…, ur(t) для t>t0 мы сможем из системы уравнений
или, что то же самое, из векторного уравнения
однозначно определить движение объекта (при t>t0), если нам известно начальное фазовое состояние объекта (в момент t=t0). Иначе говоря, задание управления u(t) и начального фазового состояния x0 однозначно определяет фазовую траекторию x(t) при t>t0, что согласуется со сделанными ранее (стр. 1) предположениями о свойствах объекта. Тот факт, что
задание начального фазового состояния (в момент t=t0)
позволяет из системы (1.4) однозначно определить фазовую траекторию x(t), t>t0,
вытекает из теоремы о существовании и единственности решений системы
дифференциальных уравнений. Напомним, что задача оптимального быстродействия заключается в отыскании такого управления u(t), для которого фазовая траектория x(t), соответствующая этому управлению в силу уравнения (1.5), проходит через точку x1 и переход из x0 в x1 осуществляется за кратчайшее время. Такое управление u(t) будем называть оптимальным управлением (в смысле быстродействия); точно так же соответствующую траекторию x(t) буде называть оптимальной траекторией. 4. Допустимые управления. Обычно управляющие параметры u1,…,ur не могут принимать совершенно произвольные значения, а подчинены некоторым ограничениям. Так, например, в случае объекта, описанного на стр. 4, естественно предположить, что сила u, развиваемая двигателем, не может быть как угодно большой по величине, а подчинена ограничениям α≤u≤β, где α и β – некоторые постоянные, характеризующие двигатель. В частности, при α=─1, β=1 мы получаем ограничение ─1≤u≤1, которое означает, что двигатель может развивать силу, направленную вдоль оси x1 как в положительном, так и в отрицательном направлении, но не превосходящую единицы по абсолютной величине. Для объектов, содержащих r управляющих параметров u1,…,ur, в приложениях часто встречается случай, когда эти параметры могут произвольно меняться в следующих пределах: α1≤u1≤ β1, α2≤u2≤β2,…, αr≤ur≤βr. |
|
||||||||||||||||||||||||||||||||
![]() |
|
Рефераты бесплатно, реферат бесплатно, курсовые работы, реферат, доклады, рефераты, рефераты скачать, рефераты на тему, сочинения, курсовые, дипломы, научные работы и многое другое. |
||
При использовании материалов - ссылка на сайт обязательна. |