![]() |
|
|
Реферат: Самостоятельная работа как средство обучения решению уравнений в 5-9 классахРеферат: Самостоятельная работа как средство обучения решению уравнений в 5-9 классахМинистерство общего и профессионального образования РФ Светлоградский педагогический колледж Дипломная работа Самостоятельная работа как средство обучения решению уравнений в 5 - 9 классах Выполнила: Руководитель: Светлоград, 2000 г.Содержание:
ВведениеУравнения в школьном курсе алгебры занимают ведущее место. На их изучение отводится времени больше, чем на любую другую тему. Действительно, уравнения не только имеют важное теоретическое значение, но и служат чисто практическим целям. Подавляющее большинство задач о пространственных формах и количественных отношениях реального мира сводится к решению различных видов уравнений. Овладевая способами их решения, мы находим ответы на различные вопросы из науки и техники (транспорт, сельское хозяйство, промышленность, связь и т. д.). Так же для формирования умения решать уравнения большое значение имеет самостоятельная работа учащегося при обучении решения уравнений. Проблема методики формирования умений самостоятельной работы является актуальной для учителей всех школьных предметов, в том числе и для учителей математики. Ее решение важно еще и с той точки зрения, что для успешного овладения современным содержанием школьного математического образования необходимо повысить эффективность процесса обучения в направлении активизации самостоятельной деятельности учащихся. Для этого требуется четко определить систему умений и навыков, овладение которыми приводит к самостоятельному выполнению работ различного характера. Важным также является раскрытие процесса формирования умений и навыков самостоятельной работы при обучении курсам математики, при этом необходимо показать, как в ходе преподавания математики учитель может осуществить формирование у учащихся отмеченных выше умений и навыков. Поэтому я решила работать над данной темой дипломной работы: «Самостоятельная деятельность, как средство обучения решению уравнений в 5-9 классах. Я хочу в своей дипломной работе рассмотреть вопросы связанные с изучением уравнений в курсе математики и как при помощи схемной работы улучшить качество усвоения материала дипломной темы. Поэтому при работе над дипломной работы я перед собой поставила следующие цели и задачи. 1. Изучить психолого - педагогическую и методическую литературу, Касающуюся изучению уравнений. Проанализировать школьные учебники и выделить в них место уравнений. 2. Составить конспекты уроков обучения решения различных видов уравнений с использованием самостоятельной работы. 3. Разработать самостоятельных работ для учащихся по различным темам уравнений. Провести наблюдения за использованием класса в процессе самостоятельной работы. Глава I. Теоретические аспекты обучению уравнений в 5 - 9 классах с использованием работы § Из истории возникновения уравнений. Алгебра возникла в связи с решением разнообразных задач при помощи уравнений. Обычно в задачах требуется найти одну или несколько неизвестных, зная при этом результаты некоторых действий, произведенных над искомыми и данными величинами. Такие задачи сводятся к решению одного или системы нескольких уравнений, к нахождению искомых с помощью алгебраических действий над данными величинами. В алгебре изучаются общие свойства действий над величинами. Некоторые алгебраические приемы решения линейных и квадратных уравнений были известны еще 4000 лет назад в Древнем Вавилоне. Квадратные уравнения в Древнем Вавилоне Необходимость решать уравнения не только первой, но и второй степени[1] еще в древности была вызвана потребностью решать задачи, связанные с нахождением площадей земельных участков и с земляными работами военного характера, а также с развитием астрономии и самой математики. Квадратные уравнения умели решать около 2000 лет до н. э. вавилоняне. Применяя современную алгебраическую запись, можно сказать, что в их клинописных текстах встречаются, кроме неполных, и такие, например, полные квадратные уравнения:
Правило решения этих уравнений, изложенное в вавилонских текстах, совпадает по существу с современным, однако неизвестно, каким образом дошли вавилоняне до этого правила. Почти все найденные до сих пор клинописные тексты приводят только задачи с решениями, изложенными в виде рецептов, без указаний относительно того, каким образом они были найдены. Несмотря на высокий уровень развития алгебры в Вавилоне, в клинописных текстах отсутствуют понятие отрицательного числа и общие методы решения квадратных уравнений. Как составлял и решал Диофант квадратные уравнения В «Арифметике» Диофанта нет систематического изложения алгебры, однако в ней содержится систематизированный ряд задач, сопровождаемых объяснениями и решаемых при помощи составления уравнений разных степеней. При составлении уравнений Диофант для упрощения решения умело выбирает неизвестные. Вот, к примеру, одна из его задач. Задача 11. «Найти два числа, зная, что их сумма равна 20, а произведение — 96». Диофант рассуждает следующим образом: из условия задачи вытекает, что искомые числа не равны, так как если бы они были равны, то их произведение равнялось бы не 96, а 100. Таким образом, одно из них будет больше половины их суммы, т. е. 10 + х, другое же меньше, т. е.. 10 - х. Разность между ними 2х. Отсюда уравнение (10+x)(10—x) =96, или же 100 —x2 = 96. x2 - 4 = 0 Отсюда х == 2. Одно из искомых чисел равно 12, другое 8. Решение х = - 2 для Диофанта не существует, так как греческая математика знала только положительные числа. Если мы решим эту задачу, выбирая в качестве неизвестного одно из искомых чисел, то мы придем к решению уравнения y(20-y)=96 y2 - 20y+96=0 Ясно, что, выбирая в качестве нtизвестного полуразность искомых чисел, Диофант упрощает решение; ему удается свести задачу к решению неполного квадратного уравнения Квадратные уравнения в Индии Задачи на квадратные уравнения встречаются уже в астрономическом трактате «Ариабхаттиам», составленном в 499 г. индийским математиком и астрономом Ариабхаттой. Другой индийский ученый, Брахмагупта (VII в.), изложил общее правило решения квадратных уравнений, приведенных к единой канонической форме: ax2 + bх = с, а> 0. (1) В уравнении (1) коэффициенты, кроме а, могут быть и отрицательными. Правило Брахмагупты по существу совпадает с нашим. В Древней Индии были распространены публичные соревнования в решении трудных задач. В одной из старинных индийских книг говорится по поводу таких соревнований следующее: «Как солнце блеском своим затмевает звезды, так ученый человек затмит славу другого в народных собраниях, предлагая и решая алгебраические задачи». Задачи часто облекались в стихотворную форму. Вот одна из задач знаменитого индийского математика XII в. Бхаскары. 3 а д а ч а 13.
Решение Бхаскары свидетельствует о том, что он знал о двузначности корней квадратных уравнений. Соответствующее задаче 13 уравнение Бхаскара пишет под видом
и, чтобы дополнить левую часть этого уравнения до квадрата, прибавляет к обеим частям 322, получая затем: x2 - б4х + 322 = -768 + 1024, (х - 32)2 = 256, х - 32= ±16, x1 = 16, x2 = 48. Квадратные уравнения у ал-Хорезми В алгебраическом трактате ал-Хорезми дается классификация линейных и квадратных уравнений. Автор насчитывает 6 видов уравнений, выражая их следующим образом: 1) «Квадраты равны корням», т. е. ах2 = bх. 2) «Квадраты равны числу», т. е. ах2 = с. 3) «Корни равны числу», т. е. ах = с. 4) «Квадраты и числа равны корням», т. е. ах2 + с = bх. 5) «Квадраты и корни равны числу», т. е. ах2 + bх =с. 6) «Корни и числа равны квадратам», т. е. bх + с == ах2. Для ал-Хорезми, избегавшего употребления отрицательных чисел, члены каждого из этих уравнений слагаемые, а не вычитаемые. При этом заведомо не берутся во внимание уравнения, у которых нет положительных решений. Автор излагает способы решения указанных уравнений, пользуясь приемами ал-джабр и ал-мукабала. Его решение, конечно, не совпадает полностью с нашим. Уже не говоря о том, что оно чисто риторическое, следует отметить, например, что при решении неполного квадратного уравнения первого вида ал-Хорезми, как и все математики до XVII в., не учитывает нулевого решения, вероятно, потому, что в конкретных практических задачах оно не имеет значения. При решении полных квадратных уравнений ал-Хорезми на частных числовых примерах излагает правила решения, а затем их геометрические доказательства. Приведем пример. Задача 14. «Квадрат и число 21 равны 10 корням. Найти корень» (подразумевается корень уравнения х2 + 21 = 10х). Решение автора гласит примерно так: раздели пополам число корней, получишь 5, умножь 5 само на себя, от произведения отними 21, останется 4. Извлеки корень из 4, получишь 2. Отними 2 от 5, получишь 3, это и будет искомый корень. Или же прибавь 2 к 5, что даст 7, это тоже есть корень. Трактат ал-Хорезми является первой дошедшей до нас книгой, в которой систематически изложена классификация квадратных уравнений и даны формулы их решения. § 2. Содержание и роль линии уравнений в современном школьном курсе математики Материал, связанный с уравнениями, составляет значительную часть школьного курса математики. Это объясняется тем, что уравнения широко используются в различных разделах математики, в решении важных прикладных задач. Истоки алгебраических методов решения практических задач связаны с наукой древнего мира. Как известно из истории математики, значительная часть задач математического характера, решаемых египетскими, шумерскими, вавилонскими писцами-вычислителями (XX—VI вв. до н. э.), имела расчетный характер. Однако уже тогда время от времени возникали задачи, в которых искомое значение величины задавалось некоторыми косвенными условиями, требующими, с нашей современной точки зрения, составления уравнения или системы уравнений. Первоначально для решения таких задач применялись арифметические методы. В дальнейшем начали формироваться начатки алгебраических представлений. Например, вавилонские вычислители умели решать задачи, сводящиеся с точки зрения современной классификации к уравнениям второй степени. Таким образом, был создан метод решения текстовых задач, послуживший в дальнейшем основой для выделения алгебраического компонента и его независимого изучения. Это изучение осуществлялось уже в другую эпоху сначала арабскими математиками (VI—Х вв. н. э.), выделившими характерные действия, посредством которых уравнения приводились к стандартному виду (приведение подобных членов, перенос членов из одной части уравнения в другую с переменой знака), а затем европейскими математиками Возрождения, в итоге длительного поиска создавшими язык современной алгебры (использование букв, введение символов арифметических операций, скобок и т. д.). На рубеже XVI—XVII вв. алгебра как специфическая часть математики, обладающая своим предметом, методом, областями приложения, была уже сформирована. Дальнейшее ее развитие, вплоть до нашего времени, состояло в совершенствовании методов, расширении области приложений, уточнении понятий и связей их с понятиями других разделов математики. В этом процессе все яснее становилась важность роли, которую играло понятие уравнения в системе алгебраических понятий. Открытие координатного метода (Декарт, XVII в.) и последовавшее за ним развитие аналитической геометрии позволили применить алгебру не только к задачам, связанным с числовой системой, но и к изучению различных геометрических фигур. Эта линия развития алгебры упрочила положение уравнения как ведущего алгебраического понятия, которое связывалось теперь уже с тремя главными областями своего возникновения и функционирования: a) уравнение как средство решения текстовых задач; b) уравнение как особого рода формула, служащая в алгебре объектом изучения; c) уравнение как формула, которой косвенно определяются числа или координаты точек плоскости (пространства), служащие его решением. Каждое кз этих представлений оказалось в том или ином отношении полезным. Таким образом, уравнение как общематематическое понятие многоаспектно, причем ни один из аспектов нельзя исключить из рассмотрения, особенно если речь идет о проблемах школьного математического образования. Ввиду важности и обширности материала, связанного с понятием уравнения, его изучение в современной методике математики организовано в содержательно - методическую линию — линию уравнений и неравенств. Здесь рассматриваются вопросы формирования понятий уравнения и неравенства, общих и частных методов их решения, взаимосвязи изучения уравнений и неравенств с числовой, функциональной и другими линиями школьного курса математики. Выделенным областям возникновения и функционирования понятия уравнения в алгебре соответствуют три основных направления развертывания линии уравнений и неравенств в школьном курсе математики. а) Прикладная направленность линии уравнений раскрывается главным образом при изучении алгебраического метода решения текстовых задач. Этот метод широко применяется в школьной математике, поскольку он связан с обучением приемам, используемым в приложениях математики. В настоящее время ведущее положение в приложениях математики занимает математическое моделирование. Используя это понятие, можно сказать, что прикладное значение уравнений, их систем определяется тем, что они являются основной частью математических средств, используемых в математическом моделировании. б) Теоретико-математическая направленность линии уравнений раскрывается в двух аспектах: во-первых, в изучении наиболее важных классов уравнений, и их систем и, во-вторых, в изучении обобщенных понятий и методов, относящихся к линии в целом. Оба эти аспекта необходимы в курсе школьной математики. Основные классы уравнений связаны с простейшими и одновременно наиболее важными математическими моделями. Использование обобщенных понятий и методов позволяет логически упорядочить изучение линии в целом, поскольку они описывают то общее, что имеется в процедурах и приемах решения, относящихся к отдельным классам уравнений, неравенств, систем. В свою очередь, эти общие понятия и методы опираются на основные логические понятия: неизвестное, равенство, равносильность, логическое следование, которые также должны быть раскрыты в линии уравнений в) Для линии уравнений характерна направленность на установление связей с остальным содержанием курса математики. Эта линия тесно связана с числовой линией. Основная идея, реализуемая в процессе установления взаимосвязи этих линий,— это идея последовательного расширения числовой системы. Все числовые области, рассматриваемые в школьной алгебре и началах анализа, за исключением области всех действительных чисел, возникают в связи с решением каких-либо уравнений и их систем. Области иррациональных и логарифмических выражений связаны соответственно с уравнениями хk = b (k - натуральное число, большее 1) и ax=b. Связь линии уравнений с числовой линией двусторонняя. Приведенный пример показывает влияние уравнений на развертывание числовой системы. Обратное влияние проявляется в том, что каждая вновь введенная числовая область расширяет возможности составления и решения различных уравнений. Например, введение арифметического квадратного корня из рациональных чисел позволяет записывать корни не только уравнений вида х2 = b, где b—неотрицательное рациональное число, но и любых квадратных уравнений с рациональными коэффициентами и неотрицательным дискриминантом. Линия уравнений тесно связана также и с функциональной линией. Одна из важнейших таких связей — приложения методов, разрабатываемых в линии уравнений, к исследованию функции (например, к заданиям на нахождение области определения некоторых функций, их корней, промежутков знакопостоянства и т. д.). С другой стороны, функциональная линия оказывает существенное влияние как на содержание линии уравнений и неравенств, так и на стиль ее изучения. В частности, функциональные представления служат основой привлечения графической наглядности к решению и исследованию уравнений, неравенств и их систем. С функциональной линией непосредственно связан также и небольшой круг вопросов школьного курса математики, относящихся к дифференциальным и функциональным уравнениям. Сама возможность возникновения дифференциального уравнения кроется в наличии операции дифференцирования (может быть поставлен вопрос о нахождении для заданной функции ¦ другой функции F, такой, что F' (x)=f (х)). Однако сама по себе возможность выделения дифференциальных уравнений в школьном курсе математики еще не следует из того факта, что имеются формальные основания для их рассмотрения. Как известно, теория дифференциальных уравнений обладает большой сложностью. В школьном обучении эта теория представлена лишь своими начальными частями, которые не образуют связного целого, а относятся к различным конкретным, по большей части прикладным вопросам. По-видимому, понятие дифференциального уравнения допускает более широкое представление в школьном курсе. В настоящее время этот вопрос является открытой методической проблемой. В отличие от дифференциальных функциональные уравнения (неизвестным в которых, так же как и в дифференциальных, является функция) почти не представлены в школьном курсе математики. Единичные задания, связанные с этим классом уравнений, могут быть использованы при рассмотрении показательной функции, в связи с понятием обратной функции и др. В качестве последнего примера отметим взаимосвязь линии уравнений с алгоритмической линией. Влияние же алгоритмической линии на линию уравнений заключается прежде всего в возможности использования ее понятий для описания алгоритмов решения уравнений и систем различных классов. § 3. Основные понятия линии уравнений 1. О трактовке понятия уравнения. Понятие уравнения относится к важнейшим общематематическим понятиям. Именно поэтому затруднительно предложить его определение, одновременно и строгое с формальной точки зрения, и доступное для учащихся, приступающих к овладению школьным курсом алгебры. Логико-математическое определение уравнения можно привести в такой форме: пусть на множестве М зафиксирован набор алгебраических операций, х — переменная на М; тогда уравнением на множестве М относительно х называется предикат вида а(х)=b (х), где а(х) и b(х)—термы относительно заданных операций, в запись которых входит символ х. Аналогично определяется уравнение от двух переменных и т. д. Принятым в логике терминам «терм» и «предикат» соответствуют термины школьной математики «выражение» и «предложение с переменной». Поэтому наиболее близко к приведенному формальному определению следующее определение: «Предложение с переменной, имеющее вид равенства между двумя выражениями с этой переменной, называется уравнением» Анализируя приведенное математическое определение уравнения, можно выделить в нем два компонента. Первый состоит в том, что уравнение — это особого рода предикат. Второй уточняет, какого именно рода: это равенство, соединяющее два терма, причем термы также имеют определенный специальный вид. При изучении материала, относящегося к линии уравнений и неравенств, оба компонента играют значительную роль. |
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() |
|
Рефераты бесплатно, реферат бесплатно, курсовые работы, реферат, доклады, рефераты, рефераты скачать, рефераты на тему, сочинения, курсовые, дипломы, научные работы и многое другое. |
||
При использовании материалов - ссылка на сайт обязательна. |