на тему рефераты
 
Главная | Карта сайта
на тему рефераты
РАЗДЕЛЫ

на тему рефераты
ПАРТНЕРЫ

на тему рефераты
АЛФАВИТ
... А Б В Г Д Е Ж З И К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я

на тему рефераты
ПОИСК
Введите фамилию автора:


Реферат: Полный курс лекций по математике


 
Пример. 3 Найти lim  (sin3x)/х = (0/0).

х→ 0

 

х→ 0

 
Решение: lim  (3sin3x) / (3х) = 3 lim  (sin3x) / (3х) = 3*1 = 3

х→ 0

 
Пример. 4 Найти lim  (sin5x)/(sin2х) = (0/0).

х→ 0

 

х→ 0

 
Решение: lim  (sin5x / sin2х) = lim  [((sin5x / 5х)*5x) / ((sin2x / 2x) * 2x)]

х→ 0

 

х→ 0

 
= 5/2 * [(lim (sin5x / 5х)) / lim (sin2x / 2х)] = 5/2

х→ 00

 
Пример. 5 Найти lim  (1+(1/2x))x = 100.

х→ 0

 
Решение: lim  (1+(1/2x))2x * (1/2) = ℮1/2=

х→ 00

 
Пример. 6 Найти lim  (1+(1/(x-1))x = 100.

х→ 00

 

х→ 00

 
Решение: lim  [1+(1/(x-1))]x -1+1 =  lim  [(1+(1/(x-1)))x -1 * (1+(1/(x-1)))1] = ℮*1 = ℮


 Тема 11. Производная и дифференциал.

Приращение аргумента, приращение функции.

0

 
Пусть функция у= f(х) определена в точке х0 и некоторой ее окрестности, придадим точке х0 приращение Δх и получим точку х0+Δх, значение функции в этой точке – f(х0+Δх). Разность значений f (х0+Δх) – f(х0) называется приращением функции, обозначается приращение функции Δf или Δу, т.е. Δf=f(х0+Δх) – f(х0). Рис. 1

                                      у                                                      Рис.1

У = f(х)

 


                                                                                Δу

х

 


                                                            х0            х0 + Δх

Производная функция у = f(х), в точке х0 определяется как предел отношения приращения функции Δу к приращению аргумента Δх, при стремлении Δх к нулю. f `(x0) = lim (Δf/Δx). Этот предел будет иметь конечное значение, если только и числитель стремиться к нулю (приращение функции Δf→0).

Производная имеет смысл скорости изменения какого – либо показателя. Дифференциал определяется как главная линейная часть приращения функции. Дифференциал показывает, как изменялась бы величина, если бы скорость ее изменения была бы постоянной. Дифференциал для функции у=f(х) обозначается через dy или df. Вычисляется он по формуле dy=f `(x)dx, где f ` (x) – производная функция f(x), а dx – число равное приращению независимой переменной (аргумента) ∆х.

Для вычисления производной  выведены правила нахождения производной и таблицы производных элементарных функций. Функция, имеющая производную в точке х, называется дифференцируемой в этой точке. Если функция имеет производную в каждой точке интервала, то она называется дифференцируемой в интервале.

Правила дифференцирования функций.

Пусть U(х) и V(х) дифференцируемы в точке х.

1.   (U(x) + V(x))` = U`(x) + V`(x)

2.   (U(x) * V(x))` = U`(x) * V`(x) + V`(x) * U`(x)

3.   (C*U(x))` = CU`(x), C - const

4.   (U(x) / V(x))` = [U`(x) * V(x) - V`(x) * U(x)]/ V2(x)

Таблица производных.

1.   C` = 0, C – const.

2.   x` = 1

3.   (xα)` = α xα – 1, α Є R

4.   (ax)` = ax lnx, a>0 , a≠1

5.   (ln x)` = 1/x

6.   (sin x)` = cos x

7.   (cos x)` = - sin x

8.   (tg x)` = 1/(cos x)2

9.   (ctg x)` = - 1/(sin x)2

10.                                                                                (arcsin x)` = 1/2)

11.                                                                                (arccos x)` = - 1/2)

12.                                                                                (arctg x)` = 1/(1 + x2)

13.                                                                                (arcctg x)` = - [1/(1 + x2)]

правила для нахождения дифференциала можно написать самим, умножив соответствующее правило взятия производной на dx.

Например: d sinx = (sinx)`dx = cosx dx.

Пример 1. Найти приращение функции f(x) = x2, если х = 1, ∆х = 0,1

Решение: f(х) = х2, f(х+∆х) = (х+∆х)2

Найдем приращение функции ∆f = f(x+∆x) – f(x) = (x+∆x)2 – x2 = x2+2x*∆x+∆x2 – x2 = 2x*∆x + ∆x2/

Подставим значения х=1 и ∆х= 0,1, получим ∆f = 2*1*0,1 + (0,1)2 = 0,2+0,01 = 0,21

Пример 2. Найти производную функции f(x) = x2, в произвольной точке х по определению производной, т.е. не используя таблицу производных.

∆x→0

 
Решение: (х2)` = lim   ∆f / ∆х

Из первого примера ∆f = 2x*∆x+∆x2, подставим, получим

∆x→0

 

∆x→0

 

∆x→0

 
(x2)` = lim   ∆f / ∆х = lim   (2x*∆x+∆x2)/∆x = lim  [∆x (2х + ∆х)]/ ∆x = 2x

Пример 3. у = 1-х, Найти ∆у при х=2, ∆ = 0,1

Решение: у(х) = 1-х, у(х+∆х) = 1 – (х+∆х),

∆у = у (х+∆х) – у(х) = 1-х - ∆х – (1 – х) = 1-х - ∆х – 1 + х = - ∆х

при х = 2, ∆х = 0,1 ∆у = -∆х = -0,1.

Пример 4. Найти производную от функции у=3х4 – 2х2 + 1.

Решение у` = 3*4х3 – 2*2х + 0 = 12х3 – 4х.

Пример 5. Найти производную от функции у = x2 *℮х.

Решение: у` = (x2)` *℮х + x2 *(℮х)` = 2x ℮х + x2 *℮х  ln℮

ln ℮ = log℮℮ = 1.              y` = 2x℮x + x2 * ℮x

Пример 6. У = х/(х2+1). Найти у`.

Решение у` = [1*(х2+1) – х*2х] / (х2+1)2 = [х2+1 – 2х2] / (x2 +1)2 = (1-x2) / (x2+1)2

Производные от сложных функций.

Формула для нахождения производной от сложной функции такова:

[f (φ(х))]` = fφ`(φ(x)) * φ`(x)

Например: у = (1-х2)3; у`= 3(1 –х2)2 * (-2х) или у = sin2х; у` = 2sinx * cosx. 

Пример 7 . Найти dy, если у = sin 3х

Решение dy = у` * dx = (sin3x)` dx = (cos3x) * 3dx = 3 cos3x dx.

Пример 8. Найти dy, если у = 2х^2/

Решение: dy = y` * dx = (2x^2)` * dx = 2x^2 ln2 * 2xdx

Производные высших порядков.

Пусть мы нашли от функции у = f(х) ее производную у` = f `(х). Производная от этой производной и называется производной второго порядка от функции f(х) и обозначается у`` или f `` (х) или (d2y) / (dx2). Аналогично определяются и обозначаются:  производная третьего порядка у``` = f ```(x) = (d3y) / (dx3).

                              производная четвертого порядка уIV = f IV(x) = (d4y) / (dx4).

                              производная n-oго порядка у(n) = f (n)(x) = (d n y) / (dxn).

Пример: у = 5х4 – 3х3 + 2х – 2. Найти у``.

Решение. Находим в начале первую производную: у` = 20х3 – 9х2 +2, потом вторую от первой производной: у`` = 60х2 – 18х.

Пример. y=хsinx. Найти у```.

Решение. y` = sinx + xcosx

y`` = cosx + cosx – x sinx = 2cosx – x sinx

y``` = -2sinx – sinx – x cosx = -3sinx – x cosx.


 Тема 12. Понятие первообразной. Неопределенный интеграл. Свойства неопределенного интеграла.

Определение. Функция F(x) называется первообразной для функции f(x) на интервале Х, если в каждой точке этого интервала выполняется условие

F ` (x)=f(x).

Например, для функции f(x) = 2х первообразной является F(х) = х2 для любых х Є (-∞, ∞).

Действительно, F`(x) = 2x = f(x).

F1(x) = x2 + 2 так же является первообразной для f(x) = 2x, F2(x) = x2 – 100 первообразная той же функции f(x) = 2x.

Теорема. Если F1(x) и F2(x) первообразные для функции f(x) на некотором интервале Х, то найдется такое число С, что справедливо равенство:

F2(x) = F1(x) + C,

Или можно сказать так, две первообразные для одной и той же функции отличаются друг от друга на постоянное слагаемое.

Определение. Совокупность всех первообразных для функции f(x) на интервале Х называется неопределенным интегралом от функции f(x) и обозначается f(x)dx, где - знак интеграла, f(x) – подинтегральная функция, f(x)dx – подинтегральное выражение. Таким образом

f(x)dx = F(x) + C,

F(x) – некоторая первообразная для f(x), С – произвольная постоянная. Операция нахождения неопределенного интеграла от функции называется  интегрированием этой функции.

Основные свойства неопределенного интеграла.

1.    ((f(x)dx)` = f(x). Производная от неопределенного интеграла равна подынтегральной функции.

2.    Дифференциал от неопределенного интеграла равен подинтегральному выражению.                 d(f(x)dx) = f(x)dx.

3.    Неопределенный интеграл от дифференциала некоторой функции равен этой функции с точностью до постоянного слагаемого.

d(F(x)) = F(x) + C.

4.    Постоянный множитель можно выносить за знак интеграла:

                                      , где к - число

5.    Интеграл от суммы двух функций равен сумме интегралов от этих функций

(f(x) +φ(x))dx = f(x)dx + φ(x)dx.

Для вычисления неопределенных интегралов от функций используют таблицу неопределенных интегралов, которая приводиться ниже.

Таблица неопределенных интегралов.

1.   хα dx = [xα+1 / (α +1)] +C, α ≠ -1, α Є R

2.   dx/x = ln│x│+C

3.   ax = (ax/ln a)+C, exdx = ex+C

4.   sinx dx = -cosx + C

5.   cosx dx = sinx + C

6.   dx/(cosx)2 = tgx + C

7.   dx/(sinx)2 = -ctgx + C

8.   dx /2-x2) = (arcsin x/a) + C

9.   dx / 2 – x2) = (-arccos x/a) +C

10.                                   dx / a2 +x2 = 1/a arctg x/a +C

11.                                   dx / a2 +x2 = - 1/a arcctg x/a +C

12.                                   dx / a2 -x2 = 1/2a ln │x+a/x-a│ +C

13.                                   dx / a2 +x2) = ln │x+ 2+x2)│ +C.

Пример 1. Вычислить (2х2 -3 -1)dx.

Решение. Воспользуемся свойствами 4 и 5 неопределенных интегралов и первой табличной формулой. (2х2 -3 -1)dx = 2х2 dx - 3х1/2 dx - dx=

= 2(x2/2) – 3[(х3/2 *2)/3] – x + C = x2 - 23 – x +C.

Пример 2. (2/ -1/х + 4sinx)dx = 2х –1/2dx – ln │х│ - 4cosx + C =

= 2[(x1/2 *2)/1] – ln │x│ - 4 cosx +C = 4 -ln│x│- 4cosx + C.

Для вычисления неопределенных интегралов применяют следующие методы: метод непосредственного интегрирования, метод подстановки(метод замены переменной), метод интегрирования по частям.

Существуют элементарные функции первообразные которых элементарными функциями не являются. По этой причине соответствующие неопределенные интегралы называются «неберущимися» в элементарных функциях, а сами функции не интегрируемыми в элементарных функциях.

Например, e –x^2 dx, sinх2 dx, cosх2 dx, sinx/x dx, cosx/x dx, dx/lnx – «неберущиеся» интегралы , т.е. не существует такой элементарной функции, что F `(x) = e –x^2, F ` (x) = sinx2 и т.д.


 Тема 13. Определенный интеграл, его свойства.

Формула Ньютона - Лейбница.

Понятие интегральной суммы.

Пусть на отрезке [a, в] задана функция у = f(x). Разобьем отрезок на п элементарных отрезков точками деления а = х0, х1, х2, …, хп = в. На каждом элементарном отрезке [xi-1, xi] выберем произвольную точку Сi и положим

n

 
∆хi = xi – xi-1, где i = 1,2,…,п, в каждой точке Сi найдем значение функции f(Ci), составим произведения f(C1)∆x1, f(C2)∆x2, …, f(Ci)∆xi, …, f(Cn)∆xn, рассмотрим сумму этих произведений:

I=1

 
f(C1)∆x1 + f(C2)∆x2 + … + f(Ci)∆xi + … + f(Cn)∆xn = Σ f(Ci)∆xi.

Эту сумму будем называть интегральной суммой для функции у=f(x) на отрезке [а, в]. Интегральная сумма зависит как от способа разбиения отрезка [a, в] на п частей так и от выбора точек С1, С2, …, Сп на каждом элементарном отрезке разбиения.

Геометрический смысл интегральной суммы.

Пусть у = f(x) неотрицательна на отрезке [а, в]. Рис.1

                                                                         y = f(x)

                  у


                                      S1        S2            S3

                 0      а=х0  в1   х1   с2    х2    с3     х3 =в                 х

                                                                                                               Рис.1

Пусть п=3, тогда а = х0, х1, х2, х3=в.

С1 ,С2 ,С3 точки, выбранные произвольно на каждом элементарном отрезке.

S1 = f1(C1) ∆x1 – площадь прямоугольника, построенного на первом отрезке разбиения, ∆х1 = х1-х0,

S2 = f2(C2) ∆x2 – площадь прямоугольника, построенного на втором отрезке разбиения. ∆х2 = х2-х1,

Страницы: 1, 2, 3, 4, 5, 6


на тему рефераты
НОВОСТИ на тему рефераты
на тему рефераты
ВХОД на тему рефераты
Логин:
Пароль:
регистрация
забыли пароль?

на тему рефераты    
на тему рефераты
ТЕГИ на тему рефераты

Рефераты бесплатно, реферат бесплатно, курсовые работы, реферат, доклады, рефераты, рефераты скачать, рефераты на тему, сочинения, курсовые, дипломы, научные работы и многое другое.


Copyright © 2012 г.
При использовании материалов - ссылка на сайт обязательна.