![]() |
|
|
|
|
|
|
|
|
|
|
|
|
|
Тема 11. Производная и дифференциал.
Приращение аргумента, приращение функции.
|
у Рис.1
|
||||
![]() |
||||
Δу
![]() |
|||
|
|||
х0 х0 + Δх
Производная функция у = f(х), в точке х0 определяется как предел отношения приращения функции Δу к приращению аргумента Δх, при стремлении Δх к нулю. f `(x0) = lim (Δf/Δx). Этот предел будет иметь конечное значение, если только и числитель стремиться к нулю (приращение функции Δf→0).
Производная имеет смысл скорости изменения какого – либо показателя. Дифференциал определяется как главная линейная часть приращения функции. Дифференциал показывает, как изменялась бы величина, если бы скорость ее изменения была бы постоянной. Дифференциал для функции у=f(х) обозначается через dy или df. Вычисляется он по формуле dy=f `(x)dx, где f ` (x) – производная функция f(x), а dx – число равное приращению независимой переменной (аргумента) ∆х.
Для вычисления производной выведены правила нахождения производной и таблицы производных элементарных функций. Функция, имеющая производную в точке х, называется дифференцируемой в этой точке. Если функция имеет производную в каждой точке интервала, то она называется дифференцируемой в интервале.
Правила дифференцирования функций.
Пусть U(х) и V(х) дифференцируемы в точке х.
1. (U(x) + V(x))` = U`(x) + V`(x)
2. (U(x) * V(x))` = U`(x) * V`(x) + V`(x) * U`(x)
3. (C*U(x))` = CU`(x), C - const
4. (U(x) / V(x))` = [U`(x) * V(x) - V`(x) * U(x)]/ V2(x)
Таблица производных.
1. C` = 0, C – const.
2. x` = 1
3. (xα)` = α xα – 1, α Є R
4. (ax)` = ax lnx, a>0 , a≠1
5. (ln x)` = 1/x
6. (sin x)` = cos x
7. (cos x)` = - sin x
8. (tg x)` = 1/(cos x)2
9. (ctg x)` = - 1/(sin x)2
10.
(arcsin x)` = 1/2)
11.
(arccos x)` = - 1/2)
12. (arctg x)` = 1/(1 + x2)
13. (arcctg x)` = - [1/(1 + x2)]
правила для нахождения дифференциала можно написать самим, умножив соответствующее правило взятия производной на dx.
Например: d sinx = (sinx)`dx = cosx dx.
Пример 1. Найти приращение функции f(x) = x2, если х = 1, ∆х = 0,1
Решение: f(х) = х2, f(х+∆х) = (х+∆х)2
Найдем приращение функции ∆f = f(x+∆x) – f(x) = (x+∆x)2 – x2 = x2+2x*∆x+∆x2 – x2 = 2x*∆x + ∆x2/
Подставим значения х=1 и ∆х= 0,1, получим ∆f = 2*1*0,1 + (0,1)2 = 0,2+0,01 = 0,21
Пример 2. Найти производную функции f(x) = x2, в произвольной точке х по определению производной, т.е. не используя таблицу производных.
|
Из первого примера ∆f = 2x*∆x+∆x2, подставим, получим
|
|
|
Пример 3. у = 1-х, Найти ∆у при х=2, ∆ = 0,1
Решение: у(х) = 1-х, у(х+∆х) = 1 – (х+∆х),
∆у = у (х+∆х) – у(х) = 1-х - ∆х – (1 – х) = 1-х - ∆х – 1 + х = - ∆х
при х = 2, ∆х = 0,1 ∆у = -∆х = -0,1.
Пример 4. Найти производную от функции у=3х4 – 2х2 + 1.
Решение у` = 3*4х3 – 2*2х + 0 = 12х3 – 4х.
Пример 5. Найти производную от функции у = x2 *℮х.
Решение: у` = (x2)` *℮х + x2 *(℮х)` = 2x ℮х + x2 *℮х ln℮
ln ℮ = log℮℮ = 1. y` = 2x℮x + x2 * ℮x
Пример 6. У = х/(х2+1). Найти у`.
Решение у` = [1*(х2+1) – х*2х] / (х2+1)2 = [х2+1 – 2х2] / (x2 +1)2 = (1-x2) / (x2+1)2
Производные от сложных функций.
Формула для нахождения производной от сложной функции такова:
[f (φ(х))]` = fφ`(φ(x)) * φ`(x)
Например: у = (1-х2)3; у`= 3(1 –х2)2 * (-2х) или у = sin2х; у` = 2sinx * cosx.
Пример 7 . Найти dy, если у = sin 3х
Решение dy = у` * dx = (sin3x)` dx = (cos3x) * 3dx = 3 cos3x dx.
Пример 8. Найти dy, если у = 2х^2/
Решение: dy = y` * dx = (2x^2)` * dx = 2x^2 ln2 * 2xdx
Производные высших порядков.
Пусть мы нашли от функции у = f(х) ее производную у` = f `(х). Производная от этой производной и называется производной второго порядка от функции f(х) и обозначается у`` или f `` (х) или (d2y) / (dx2). Аналогично определяются и обозначаются: производная третьего порядка у``` = f ```(x) = (d3y) / (dx3).
производная четвертого порядка уIV = f IV(x) = (d4y) / (dx4).
производная n-oго порядка у(n) = f (n)(x) = (d n y) / (dxn).
Пример: у = 5х4 – 3х3 + 2х – 2. Найти у``.
Решение. Находим в начале первую производную: у` = 20х3 – 9х2 +2, потом вторую от первой производной: у`` = 60х2 – 18х.
Пример. y=хsinx. Найти у```.
Решение. y` = sinx + xcosx
y`` = cosx + cosx – x sinx = 2cosx – x sinx
y``` = -2sinx – sinx – x cosx = -3sinx – x cosx.
Тема 12. Понятие первообразной. Неопределенный интеграл. Свойства неопределенного интеграла.
Определение. Функция F(x) называется первообразной для функции f(x) на интервале Х, если в каждой точке этого интервала выполняется условие
F ` (x)=f(x).
Например, для функции f(x) = 2х первообразной является F(х) = х2 для любых х Є (-∞, ∞).
Действительно, F`(x) = 2x = f(x).
F1(x) = x2 + 2 так же является первообразной для f(x) = 2x, F2(x) = x2 – 100 первообразная той же функции f(x) = 2x.
Теорема. Если F1(x) и F2(x) первообразные для функции f(x) на некотором интервале Х, то найдется такое число С, что справедливо равенство:
F2(x) = F1(x) + C,
Или можно сказать так, две первообразные для одной и той же функции отличаются друг от друга на постоянное слагаемое.
Определение.
Совокупность всех первообразных для функции f(x) на
интервале Х называется неопределенным интегралом от функции f(x)
и обозначается f(x)dx,
где
- знак интеграла, f(x) – подинтегральная функция, f(x)dx
– подинтегральное выражение. Таким образом
f(x)dx
= F(x) + C,
F(x) – некоторая первообразная для f(x), С – произвольная постоянная. Операция нахождения неопределенного интеграла от функции называется интегрированием этой функции.
Основные свойства неопределенного интеграла.
1.
((f(x)dx)` =
f(x). Производная от неопределенного интеграла равна подынтегральной
функции.
2.
Дифференциал от неопределенного интеграла равен подинтегральному
выражению. d(f(x)dx) =
f(x)dx.
3. Неопределенный интеграл от дифференциала некоторой функции равен этой функции с точностью до постоянного слагаемого.
d(F(x))
= F(x) + C.
4. Постоянный множитель можно выносить за знак интеграла:
, где к - число
5. Интеграл от суммы двух функций равен сумме интегралов от этих функций
(f(x)
+φ(x))dx =
f(x)dx
+
φ(x)dx.
Для вычисления неопределенных интегралов от функций используют таблицу неопределенных интегралов, которая приводиться ниже.
Таблица неопределенных интегралов.
1.
хα
dx = [xα+1 / (α +1)] +C, α ≠
-1, α Є R
2.
dx/x
= ln│x│+C
3.
ax
= (ax/ln a)+C,
exdx = ex+C
4.
sinx
dx = -cosx + C
5.
cosx
dx = sinx + C
6.
dx/(cosx)2
= tgx + C
7.
dx/(sinx)2
= -ctgx + C
8.
dx
/
2-x2)
= (arcsin x/a) + C
9.
dx
/
2 – x2)
= (-arccos x/a) +C
10.
dx
/ a2 +x2 = 1/a arctg x/a +C
11.
dx
/ a2 +x2 = - 1/a arcctg x/a +C
12.
dx
/ a2 -x2 = 1/2a ln │x+a/x-a│ +C
13.
dx
/
a2 +x2)
= ln │x+
2+x2)│
+C.
Пример 1.
Вычислить (2х2 -3
-1)dx.
Решение.
Воспользуемся свойствами 4 и 5 неопределенных интегралов и первой табличной
формулой. (2х2 -3
-1)dx = 2
х2 dx - 3
х1/2 dx -
dx=
= 2(x2/2) – 3[(х3/2 *2)/3] – x + C = x2 - 23
– x +C.
Пример 2.
(2/
-1/х +
4sinx)dx =
2х –1/2dx – ln │х│ - 4cosx + C =
= 2[(x1/2 *2)/1] – ln
│x│ - 4 cosx +C = 4 -ln│x│-
4cosx + C.
Для вычисления неопределенных интегралов применяют следующие методы: метод непосредственного интегрирования, метод подстановки(метод замены переменной), метод интегрирования по частям.
Существуют элементарные функции первообразные которых элементарными функциями не являются. По этой причине соответствующие неопределенные интегралы называются «неберущимися» в элементарных функциях, а сами функции не интегрируемыми в элементарных функциях.
Например, e –x^2
dx,
sinх2 dx,
cosх2 dx,
sinx/x dx,
cosx/x dx,
dx/lnx – «неберущиеся»
интегралы , т.е. не существует такой элементарной функции, что F `(x) = e –x^2, F ` (x) = sinx2 и т.д.
Тема 13. Определенный интеграл, его свойства.
Формула Ньютона - Лейбница.
Понятие интегральной суммы.
Пусть на отрезке [a, в] задана функция у = f(x). Разобьем отрезок на п элементарных отрезков точками деления а = х0, х1, х2, …, хп = в. На каждом элементарном отрезке [xi-1, xi] выберем произвольную точку Сi и положим
|
|
Эту сумму будем называть интегральной суммой для функции у=f(x) на отрезке [а, в]. Интегральная сумма зависит как от способа разбиения отрезка [a, в] на п частей так и от выбора точек С1, С2, …, Сп на каждом элементарном отрезке разбиения.
Геометрический смысл интегральной суммы.
Пусть у = f(x)
неотрицательна на отрезке [а, в].
Рис.1
y = f(x)
у
S1 S2 S3
0 а=х0 в1 х1 с2 х2 с3 х3 =в х
Рис.1
Пусть п=3, тогда а = х0, х1, х2, х3=в.
С1 ,С2 ,С3 точки, выбранные произвольно на каждом элементарном отрезке.
S1 = f1(C1) ∆x1 – площадь прямоугольника, построенного на первом отрезке разбиения, ∆х1 = х1-х0,
S2 = f2(C2) ∆x2 – площадь прямоугольника, построенного на втором отрезке разбиения. ∆х2 = х2-х1,
![]() |
||
НОВОСТИ | ![]() |
![]() |
||
ВХОД | ![]() |
|
Рефераты бесплатно, реферат бесплатно, курсовые работы, реферат, доклады, рефераты, рефераты скачать, рефераты на тему, сочинения, курсовые, дипломы, научные работы и многое другое. |
||
При использовании материалов - ссылка на сайт обязательна. |