![]() |
|
|
Шпаргалка: Лекции по количественной оценке информацииб) число остатков должно быть не
меньше числа строк единичной транспонированной матрицы, т. е. должно быть равно
числу информационных разрядов в) число единиц каждого остатка,
т. е. его вес, должно быть не менее величины г) количество нулей, приписываемых к единице с нулями при делении ее на выбранный неприводимый многочлен, должно быть таким, чтобы соблюдались условия а), б), в). 5. Образующая матрица составляется дописыванием элементов дополнительной матрицы справа от единичной транспонированной матрицы либо умножением элементов единичной матрицы на образующий многочлен. 6. Комбинациями искомого кода являются строки образующей матрицы и все возможные суммы по модулю 2 различных сочетаний строк образующей матрицы. 7. Обнаружение и исправление ошибок производится
по остаткам от деления принятой комбинации а) принятую комбинацию делят на образующий многочлен и б) подсчитывают количество единиц в остатке (вес остатка). Если в) производят циклический сдвиг
принятой комбинации
г) производят циклический сдвиг
вправо на один разряд комбинации, полученной в результате суммирования
последнего делимого с последним остатком. Полученная в результате комбинация
уже не содержит ошибок. Если после первого циклического сдвига и последующего
деления остаток получается таким, что его вес д) повторяют операцию пункта в)
до тех пор, пока не будет е) производят циклический сдвиг вправо ровно на столько разрядов, на сколько была сдвинута суммируемая с последним остатком комбинация относительно принятой комбинации. В результате получим исправленную комбинацию[18]. II.
Коды,
обнаруживающие трехкратные ошибки, 1. Выбор числа корректирующих разрядов производится из соотношения или 2. Выбор образующего многочлена производят, исходя из следующих соображений: для обнаружения трехкратной ошибки поэтому степень образующего
многочлена не может быть меньше четырех; многочлен третьей степени, имеющий
•число ненулевых членов больше или равное трем, позволяет обнаруживать все
двойные ошибки, многочлен первой степени 3. Построение образующей матрицы производят либо нахождением остатков от деления единицы с нулями на образующий многочлен, либо умножением строк единичной матрицы на образующий многочлен. 4. Остальные комбинации корректирующего кода находят суммированием по модулю 2 всевозможных сочетаний строк образующей матрицы. 5. Обнаружение ошибок производится по остаткам от
деления принятой комбинации Пример: Исходная кодовая комбинация - 0101111000, принятая - 0001011001 (т. е. произошел тройной сбой). Показать процесс обнаружения ошибки, если известно, что комбинации кода были образованы при помощи многочлена 101111. Решение: Остаток не нулевой, комбинация бракуется. Указать ошибочные разряды при трехкратных искажениях такие коды не могут. III. Циклические коды,
исправляющие две и большее количество ошибок, Методика построения циклических
кодов с Построение образующего
многочлена зависит, в основном, от двух параметров: от длины кодового слова п.
и от числа исправляемых ошибок s. Остальные параметры, участвующие в построении образующего многочлена, в
зависимости от заданных Для исправления числа ошибок
при этом п всегда будет
нечетным числом. Величина h определяет выбор числа контрольных символов
С другой стороны, число контрольных символов определяется образующим многочленом и равно его степени. При больших значениях h длина кода п становится очень большой, что вызывает вполне определенные трудности при технической реализации кодирующих и декодирующих устройств. При этом часть информационных разрядов порой остается неиспользованной. В таких случаях для определения h удобно пользоваться выражением
где Соотношения между
Например, при h = 10
длина кодовой комбинации может быть равна и 1023 Построение образующего
многочлена
Порядок многочлена используется
при определении числа сомножителей
а старшая степень
( Степень образующего многочлена, полученного в результате перемножения выбранных минимальных многочленов,
В общем виде
Декодирование кодов БЧХ
производится по той же методике, что и декодирование циклических кодов с ТЕМА 8. СЖАТИЕ ИНФОРМАЦИИСжатие информации представляет собой операцию, в результате которой данному коду или сообщению ставится в соответствие более короткий код или сообщение[19]. Сжатие информации имеет целью - ускорение и удешевление процессов механизированной обработки, хранения и поиска информации, экономия памяти ЭВМ. При сжатии следует стремиться к минимальной неоднозначности сжатых кодов при максимальной простоте алгоритма сжатия. Рассмотрим наиболее характерные методы сжатия информации. Сжатие информации делением кода на части, меньшие некоторой наперед заданной величины А, заключается в том, что исходный код делится на части, меньшие А, после чего полученные части кода складываются между собой либо по правилам .двоичной арифметики, либо по модулю 2. Например, исходный код 101011010110; A = 4
Сжатие информации с побуквенным сдвигом в каждом разряде [5], как и предыдущий способ, не предусматривает восстановления сжимаемых кодов, а применяется лишь для сокращения адреса либо самого кода сжимаемого слова в памяти ЭВМ. Предположим, исходное слово «газета» кодируется кодом, в котором длина кодовой комбинации буквы l = 8: Г - 01000111; а - 11110000; з - 01100011; е - 00010111; т - 11011000. Полный код слова «Газета» 010001111111000001100011000101111101100011110000. Сжатие осуществляется сложением по модулю 2 двоичных кодов букв сжимаемого слова с побуквенным сдвигом в каждом разряде. Допустимое количество разрядов сжатого кода является вполне определенной величиной, зависящей от способа кодирования и от емкости ЗУ. Количество адресов, а соответственно максимальное количество слов в выделенном участке памяти машины определяется из следующего соотношения
где где k - число побуквенных сдвигов; Так как сдвигаются все буквы, кроме первой, то и число
сдвигов В русском языке наиболее длинные слова имеют 23 - 25 букв. Если принять Если значение Например, если для предыдущего
примера со словом “Газета” Метод сжатия информации на основе исключения повторения в старших разрядах последующих строк, массивов одинаковых элементов старших разрядов предыдущих строк массивов основан на том, что в сжатых массивах повторяющиеся элементы старших разрядов заменяются некоторым условным символом. Очень часто обрабатываемая информация бывает представлена в виде набора однородных массивов, в которых элементы столбцов или строк массивов расположены в нарастающем порядке. Если считать старшими разряды, расположенные левее данного элемента, а младшими - расположенные правее, то можно заметить, что во многих случаях строки матриц отличаются друг от друга в младших разрядах. Если при записи каждого последующего элемента массива отбрасывать все повторяющиеся в предыдущем элементы, например в строке стоящие подряд элементы старших разрядов, то массивы могут быть сокращены от 2 до 10 и более разрядов [2]. Для учета выброшенных разрядов
вводится знак раздела Для примера рассмотрим следующий массив: Свернутый массив будет иметь вид: Расшифровка (развертывание)
происходит с конца массива. Переход на следующую строку происходит по двум
условиям: либо по заполнению строки, либо при встрече Пропущенные цифры заполняются автоматически по
аналогичным разрядам предыдущей строки. Заполнение производится с начала
массива. Этот метод можно развить и для свертывания массивов, в которых
повторяющиеся разряды встречаются не только с начала строки. Если в строке один
повторяющийся участок, то кроме Если в строке есть два повторяющихся участка, то, используя этот метод, выбрасываем больший. Процесс развертывания массива осуществляется следующим образом: переход на следующую строку происходит при встрече К Пропущенные цифры заполняются по аналогичным разрядам предыдущей строки начиная с конца массива. Если в строке массива несколько
повторяющихся участков, то можно вместо Например, если обозначить количество пропусков, соответственно, Х - 2; Y - 3; Z - 5, то исходный и свернутый массивы будут иметь вид: Процесс развертывания массива осуществляется следующим образом: длина строки известна, количество пропусков определяется символами X, Y, Z Пропущенные цифры заполняются по аналогичным разрядам предыдущей строки. Условием перехода на следующую строку является заполнение предыдущей строки. Метод Г. В. Ливинского основан на том, что в памяти машины хранятся сжатые числа, разрядность которых меньше разрядности реальных чисел. Эффект сжатия достигается за счет того, что последовательности предварительно упорядоченных чисел разбиваются на ряд равных отрезков, внутри которых отсчет ведется не по их абсолютной величине, а от границы предыдущего отрезка. Разрядность чисел, получаемых таким образом, естественно, меньше разрядности соответствующих им реальных чисел [18, 21]. Для размещения в памяти ЭВМ М кодов, в которых наибольшее из кодируемых чисел равно N, необходим объем памяти С ростом N длина кодовой
комбинации будет расти как
Чтобы найти, при каких L выражение (89) принимает
минимальное значение, достаточно продифференцировать его по L и,
приравнять производную к нулю. Нетрудно убедиться, что
Если подставить значение
Для значений
При поиске информации в памяти
ЭВМ прежде всего определяют значение Затем определяют, в каком именно из интервалов находится искомое число х После этого определяется адрес искомого числа как разность между абсолютным значением числа и числом, которое является граничным для данного интервала. [1] Первичный алфавит составлен из m1 символов (качественных признаков), при помощи которых записано передаваемое сообщение. Вторичный алфавит состоит из m2 символов, при помощи которых сообщение трансформируется в код. [2] Строго говоря, объема информации не существует. Мы вкладываем в этот термин то, что привыкли под этим подразумевать, - количество элементарных символов в принятом (вторичном) сообщении. [3] Суть взаимозависимости символов букв алфавита заключается в том, что вероятность появления i-й буквы в любом месте сообщения зависит от того, какие буквы стоят перед ней и после нее, и будет отличаться от безусловной вероятности pi, известной из статистических свойств данного алфавита. ' Рассмотрение семантической избыточности не входит в задачи теории информации. [5] Здесь и далее под термином «оптимальный код» будем подразумевать коды с практически нулевой избыточностью, так как сравниваем длину кодовой комбинации с энтропией источника сообщений, не учитывая взаимозависимость символов. С учетом взаимозависимости символов эффективность кодирования никогда не будет 100 %, т. е. Кроме того, являясь оптимальным с точки зрения скорости передачи информации, код может быть неоптимальным с течки зрения предъявляемых к нему требований помехоустойчивости. [6] т—-число качественных признаков строящегося оптимального кода. [7] С основной теоремой кодирования для каналов связи без шумов можно ознакомиться в работе К. Шеннона «Работы по теории информации и кибернетике* либо в популярном изложении в работах [18, 22]. [8] Рассмотренный принцип заложен в основу мажоритарного декодирования.-корректирующих кодов и известен как метод Бодо—Вердана. [9] В какой-то мере исключением из этого правила являются рефлексные коды. В этих кодах последующая комбинация отличается от предыдущей одним символом. В таких, в общем-то безызбыточных кодах, одновременное изменение нескольких символов в принятом сообщении говорит о наличии ошибки. Однако обнаруживать ошибку такие коды могут только в том случае, если кодовые комбинации следуют строго друг за другом. На практике это возможно при передаче информации о плавно изменяющихся процессах. [10] В обоих выражениях квадратные скобки означают, что берется округленное значение до ближайшего целого числа в большую сторону. Индекс при показывает количество исправляемых ошибок, а число в круглых скобках при индексе - число обнаруживаемых ошибок. [11] Условие верхней и нижней границ для максимально допустимого числа информационных разрядов может быть записано следующим образом: . [12] ' Оптимальным корректирующим кодом для симметричного канала называется групповой код, при использовании которого вероятность ошибки не больше, чеу при использовании лю5ого другого кода с такими же п„ и Лц [1, 2, б]. У этих кодов критерий оптимальности не имеет ничего общего с критерием оптимальности ОНК. [13] Практически», так как контрольные символы циклических кодов, построенных путем простого перемножения многочленов, могут оказаться в произвольном месте кодовой комбинации. [14] Упрощенно, множество элементов принадлежит к одному полю, если над ними можно производить операции сложения и умножения по правилам данного поля, при этом сложение и умножение должны подчиняться дистрибутивному закону для всех и . [15] О возможности представления линейного кода в виде единичной и некоторой дополнительной матрицы см., например, [22, с. 408, 409]. [16] Следует сказать, что не все циклические коды могут быть получены таким простым способом, однако не будем пока усложнять изложение. [17] можно определять и по формуле [18] Коды с d0 = 2, обнаруживающие одиночную ошибку, здесь сознательно не рассматриваются, так как они не имеют практического значения. В двоичных кодах всегда проще подобрать контрольный символ 0 или 1 таким образом, чтобы сумма единиц в кодовом слове была четной, чем строить циклический код для получения того же результата. [19] Кодирование от сжатия отличается тем, что коды почти всегда длиннее кодируемых сообщений, так как число качественных признаков вторичного алфавита (кода) обычно не бывает больше числа качественных признаков первичного алфавита (кодируемых сообщений). Говоря «сжатый код», будем иметь в виду комбинацию, представляющую кодируемое понятие после процедуры сжатия. [20] При M<100 следует братьболее точное выражение для , а именно: |
![]() |
||
НОВОСТИ | ![]() |
![]() |
||
ВХОД | ![]() |
|
Рефераты бесплатно, реферат бесплатно, курсовые работы, реферат, доклады, рефераты, рефераты скачать, рефераты на тему, сочинения, курсовые, дипломы, научные работы и многое другое. |
||
При использовании материалов - ссылка на сайт обязательна. |