на тему рефераты
 
Главная | Карта сайта
на тему рефераты
РАЗДЕЛЫ

на тему рефераты
ПАРТНЕРЫ

на тему рефераты
АЛФАВИТ
... А Б В Г Д Е Ж З И К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я

на тему рефераты
ПОИСК
Введите фамилию автора:


Учебное пособие: Предмет и содержание кибернетики


Поэтому нельзя забывать, что любой информации присущи определенные свойства, позволяющие ее правильно интерпретировать.

Свойства информации

Достоверность – если она отражает истинное положение дел. Недостоверная информация может привести к неправильному пониманию или принятию неправильных решений.

Полнота – если ее достаточно для понимания и принятия решения. Неполная информация сдерживает принятие решения и может повлечь за собой ошибки.

Ценность – зависит от того, насколько она важна для решения задачи.

Актуальность – это когда информация соответствует существующей ситуации, необходима для срочного принятия решения, соответствует требуемому заданию.

Ясностьесли она воспроизводится и передается четко, последовательно и однозначно.

Понятность – если она выражена языком, на котором говорят те, кому она предназначена. Ценная и актуальная информация, выраженная непонятным языком (словами), может стать бесполезной.

Виды и формы представления информации в информационных системах

Все многообразие окружающей нас информации можно классифицировать по различным признакам. Так, по признаку «область возникновения» информацию, отражающую процессы, явления неодушевленной природы, называют элементарной, или механической, процессы животного и растительного мира – биологической, человеческого общества – социальной. Информацию, создаваемую и используемую человеком по общественному назначению можно разбить на три вида: личная, массовая и специальная. Личная – предназначена для конкретного человека, массовая – для любого, желающего ею пользоваться, специальная – для узкого круга лиц, занимающихся решением сложных специальных задач в области науки, техники и т.д.

В автоматизированных ИС выделяют:

– структурную (преобразующую) информацию объектов системы, ее элементов управления, алгоритмов и программ переработки информации;

– содержательную (специальную, главным образом осведомляющую, измерительную и управляющую, а также научно-техническую и др.) информацию, извлекаемую из информационных массивов (сообщений команд и т.д.) относительно индивидуальной модели предметной области получателя (человека или подсистемы).

Первая связана с качеством информационных процессов в системе, с внутренними технологическими эффектами и затратами на переработку информации. Вторая – как правило, с внешним целевым (материальным) эффектом.

При реализации ИП передача информации от источника к приемнику может осуществляться с помощью какого-либо материального носителя (бумаги, магнитной ленты, диска и т.д.) или физического процесса (звуковых или электромагнитных волн). В зависимости от типа носителя различают следующие виды информации: документальную (ДИ) акустическую (речевую) и телекоммуникационную (ТИ).

ДИ представляется в графическом или буквенно-цифровом виде на бумаге, а также в электронном виде. РИ возникает в ходе ведения разговоров, а также при работе систем звукоусиления и звуковоспроизведения. ТИ циркулирует в технических средствах обработки и хранения информации, а также в каналах связи при ее передаче. Носителем информации при ее обработке техническими средствами и передаче по проводным каналам связи является электрический ток, а при передаче по радио и оптическому каналам – электромагнитные волны.

В настоящее время во всех вычислительных машинах информация представляется с помощью электрических сигналов. При этом возможны две формы представления численного значения какой-либо переменной: аналоговой (в виде одного сигнала) и дискретной (в виде нескольких сигналов).

Единицы измерения информации

Под количеством информации понимают меру снятия неопределенности ситуации при получении сообщения. В решении определения количества информации существуют два основных подхода. В конце 40-х годов ХХ века один из основоположников кибернетики американский математик Клод Шеннон, развил вероятностный подход. А работы по созданию ЭВМ, привели к использованию объемного способа измерения информации, учитывающего количество символов, содержащихся в сообщении. Длина сообщения при этом обусловлена используемым алфавитом.

При этом для измерения информации вводятся два параметра: количество информации I и объем данных Vд.

Вероятностный подход основан на энтропии Н – величина, характеризующая неопределенность информации. На ней строятся теории Хартли и Шеннона, описанные следующими формулами:

Н=log2N – аддитивная мера Хартли

Н= -- формула Шеннона определения среднего количества информации в сообщении с учетом известных вероятностных характеристик его элементарных составляющих,

где N – количество элементов, определяющих сообщение, Pj – априорная (доопытная) вероятность появления элемента хj в сообщении, log2Pj – количество информации в битах, доставляемой элементом хj сообщения.

Наименьшей единицей измерения информации является Бит. Это двоичная ячейка памяти, которая может находиться в двух состояниях: «0» когда амплитуда импульса равна 0 или близка к нему, и «1», когда амплитуда импульса приближена к напряжению источника питания.

Выбор такой единицы количества информации связан с наиболее распространенным способом ее обработки на компьютере с помощью двоичного кода.

1 Бит – это количество информации, содержащейся в сообщении типа «да» – «нет», что в двоичном коде равнозначно символам 1 – 0.

Основной единицей количества информации, воспринимаемой и обрабатываемой компьютером является Байт, объединяющий блоки данных из 8 Бит. Т.о. 1Байт = 8Бит. Байт записывается в память компьютера, считывается и обрабатывается как единое целое. Количественная совокупность Байт называется машинным словом.

Информация, обрабатываемая компьютером поступает в него уже закодированной.

Кодирование информации

Для автоматизации работы с данными, очень важно унифицировать их форму представления – для этого обычно используется прием кодирования, т.е. выражение данных одного типа через данные другого типа. Человеческие языки – это ни что иное, как системы кодирования понятий для выражения мыслей по средствам речи. Проблема универсального средства кодирования достаточно успешно реализуется в отдельных отраслях техники науки и культуры (телеграфная азбука, система Брайля для слепых, система записи математических выражений и др.)

Своя система существует и в вычислительной технике – она называется двоичным кодированием и основана на представлении данных последовательностью всего двух знаков: 0 и 1. эти знаки называют двоичными цифрами.


Лекция №4. Системы счисления

Система счисления – это способ изображения любых чисел с помощью некоторого набора символов, которые называются цифрами.

Все системы счисления делятся на два больших класса – непозиционные и позиционные.

В непозиционной системе значение цифры не зависит от места, которое она занимает в записи числа. Примером непозиционной системы счисления является римская система записи чисел.

В позиционных системах счисления вес (значение) каждой цифры изменяется от ее позиции (положения) в записи числа. Примером такой системы является наша с вами привычная десятичная система счисления.

Название системе дает количество цифр, необходимых для записи числа в данной системе.

Наиболее распространенными системами счисления являются:

-  двоичная сс (две цифры 0 и 1)

-  десятичная сс (десять цифр 0, 1, 2, 3, 4, 5, …9)

-  восьмеричная сс (восемь цифр 0, 1, …7)

-  шестнадцатеричная сс (цифры 0, 1, 2, …9 и знаки A, B, C, D, E, F)

Десятичная система счисления наиболее распространена в вычислительной практике и этим она обязана случайному обстоятельству – наличию у людей десяти пальцев на руках.

Количество различных цифр, необходимых для записи чисел в данной системе счисления называется основанием системы счисления – р.

У двоичной системы счисления основание р=2, у восьмеричной – 8=23, у шестнадцатеричной – 16=24.

Рядом с числом в скобках указывают систему счисления, в которой это число записано, т.е. А(р).

В позиционной системе счисления с некоторым основанием р любое число можно представить в виде последовательности цифр


А(р) = а(n-1) а(n-2)….а(1) а(0), а(-1) а(-2)…а(-m)

Десятичная цифра Эквиваленты в системах счисления Десятичная цифра Эквиваленты в системах счисления
р=2 р=8 р=16 р=2 р=8 р=16
0 0 0 0 8 1000 10 8
1 1 1 1 9 1001 11 9
2 10 2 2 10 1010 12 A
3 11 3 3 11 1011 13 B
4 100 4 4 12 1100 14 C
5 101 5 5 13 1101 15 D
6 110 6 6 14 1110 16 E
7 111 7 7 15 1111 17 F

В р – ичной системе счисления любое число имеет вид:

(*) А(р)=аn-1 рn-1 +аn-2 рn-2 + … +а1 р1 +а0 р0 + а-1 р-1 + … + а-m р-m

Где аi – цифры в записи числа

р – основание системы счисления

n – количество разрядов (позиций) в целой части числа (до запятой)

m – количество разрядов в дробной части числа (после запятой)

Н-р: 1995 (10)= 1*103 + 9*102 + 9*101 +5*100

1001 (2)= 1*23 +0*22 +0*21 +1*20

В ЭВМ длина обрабатываемых чисел обычно ограничена следующими значениями: 1 байт (8 двоичных разрядов), 2 байта (16 разрядов), 4 байта (32 разряда) и 8 байт (64 разряда).

Так, максимальное целое положительное число, которое можно записать с использованием 16 двоичных разрядов равно, 2-6-1=65535

20

21

22

23

24

25

26

27

И
1 2 4 8 16 32 64 128 т.д.

Перевод чисел из одной системы счисления в другую

Страницы: 1, 2, 3, 4, 5


на тему рефераты
НОВОСТИ на тему рефераты
на тему рефераты
ВХОД на тему рефераты
Логин:
Пароль:
регистрация
забыли пароль?

на тему рефераты    
на тему рефераты
ТЕГИ на тему рефераты

Рефераты бесплатно, реферат бесплатно, курсовые работы, реферат, доклады, рефераты, рефераты скачать, рефераты на тему, сочинения, курсовые, дипломы, научные работы и многое другое.


Copyright © 2012 г.
При использовании материалов - ссылка на сайт обязательна.