на тему рефераты
 
Главная | Карта сайта
на тему рефераты
РАЗДЕЛЫ

на тему рефераты
ПАРТНЕРЫ

на тему рефераты
АЛФАВИТ
... А Б В Г Д Е Ж З И К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я

на тему рефераты
ПОИСК
Введите фамилию автора:


Реферат: ПЛИС Xilinx семейства Virtex™


На Рис. 12 показана полная система, содержащая кристалл в ведущем и кристалл в подчиненном режимах. В этой схеме крайнее левое устройст­во работает в ведущем последовательном режиме. Остальные устройства работают в подчиненном последовательном режиме. На вход  микросхемы ППЗУ подается сигнал с контактов  микросхемы FPGA. Аналогично, на вход  — с выхода DONE. При этом в зависимости от выбранной стартовой последовательности существует конфликт потенци­алов на контакте DONE.

Для последовательного конфигурирования микросхем FPGA необходимо использовать последовательность, изображенную в виде алгоритма на Рис. 14.

Временная диаграмма для ведущего последовательного режима показа­на на Рис. 15. Данный режим выбирается заданием кода <000> или <100> на входах М2, Ml, М0. Необходимую временную информацию для этого режима содержит Табл. 10.

Время нарастания напряжения питания  от уровня 1 В до мини­мально допустимого значения  не должно превышать 50 мс, в против­ном случае необходимо удерживать сигнал  в состоянии низко­го логического уровня до момента достижения допустимого уровня .

6.1.3. Режим SelectMAP

SelectMAP — самый быстрый режим конфигурирования. В этом режи­ме данные записываются в FPGA побайтно с использованием флага BUSY, управляющего потоком данных.

Внешний источник создаёт байтовый поток данных и сигналы CCLK, выбор кристалла (Chip Select — ), запись (). Если установлен высокий логический уровень сигнала BUSY, данные должны удерживать­ся до тех пор, пока BUSY не будет переведен в состояние низкого уровня.

Используя этот режим можно считать данные. Если сигнал  не установлен (т.е. находится в состоянии высокого логического уровня), кон­фигурационные данные читаются обратно из FPGA, как часть операции обратного считывания.

После окончания конфигурирования контакты порта SelectMAP могут использоваться как дополнительные пользовательские входы-выходы.


                             

Можно использовать этот порт для быстрого 8-битового обратного считы­вания конфигурационных данных.

Сохранение такой возможности после конфигурирования реализует­ся на этапе создания битового потока. Для сохранения такой возможно­сти необходимо использовать ограничения типа PROHIBIT, предохра­няющие контакты порта SelectMAP от использования в качестве поль­зовательских.

Несколько FPGA Virtex могут конфигурироваться в режиме SelectMAP, и далее одновременно запускаться для штатного функционирования. Для кон­фигурирования нескольких устройств таким способом, необходимо соеди­нить параллельно индивидуальные сигналы отдельных микросхем CCLK, Data,  и BUSY. Конкретные микросхемы конфигурируются по очере­ди за счет поочередной подачи активного сигнала на контакт выборки () этой FPGA и записи соответствующих ей данных. В Табл. 11 представлены временные параметры сигналов режима SelectMAP.

 

Запись

Процедура записи  посылает пакеты  конфигурационных данных в FPGA. Необходимо отметить, что конфигурационный пакет можно расще­пить на несколько таких последовательностей. Пакет не должен быть за­кончен за время одной активизации сигнала , изображенной на Рис. 16.

Последовательность операций:

1. Установить сигналы  и  в состояние низкого логическо­го уровня. Отметим, что если сигнал  активизируется во время уже функционирующего сигнала CCLK, сигнал  должен оставаться неизменным. В противном случае, как описано далее, будет инициирова­но преждевременное прекращение процедуры.

Таблица 11. Параметры сигналов режима SelectMAP.

Параметр

Обозначение Значение
min max
Предустановка/удержание входных сигналов  D0-D7 1/2*

5.0 нс/0 нс

Предустановка/удержание входного сигнала

3/4*

7.0 нс/0 нс

Предустановка/удержание входного сигнала

5/6*

7.0 нс/0 нс

Задержка распространения сигнала

7*

12.0 нс
Частота

66 МГц
Частота без подтверждения получения данных

50 МГц
*См. рис. 16.

2. Данные подать на вход D[7:0]. Отметим, что для избежания кон­фликта между данными от различных источников, информация не должна выдаваться во время, когда сигнал  имеет значение ‘0’, a  — значение ‘1’. Также нельзя активизировать больше одного CS, в то вре­мя когда сигнал WRITE имеет значение ‘1’.

3. Данные принимаются по нарастающему фронту CCLK при усло­вии, что сигнал BUSY при этом имеет значение ‘0’. В случае, если сиг­нал BUSY имел значение ‘1’ от предыдущей записи, данные не прини­маются. Данные снова будут приниматься по первому же нарастающему фронту CCLK после перехода BUSY в состояние ‘0’; при этом данные должны удерживаться до этого события.

4. Повторять шаги 2 и 3 до тех пор, пока не будут переданы все данные.

5. Перевести сигналы  и  в неактивное состояние.

Алгоритм процедуры записи показан на Рис. 17. Отметим, что если сигнал CCLK медленнее, чем , FPGA не будет выставлять сигнал BUSY, в этом случае обмен подтверждениями готовности после реального приема данных не нужен, и данные могут просто вводиться в FPGA по каждому циклу сигнала CCLK.

Преждевременное прекращение процедуры

После установки активного уровня сигнала , пользователь не может переключаться с записи на чтение или наоборот. В противном случае такое действие приведет к преждевременному прекращению текущей пакетной команды. Устройство будет оставаться в состоянии BUSY (занято) до тех пор, пока прерванная процедура будет завершена. После прекращения процедуры, для продолжения приема пакета, необходимо повторить пере­дачу того слова, которое было прервано не на границе слова.

Для того чтобы инициировать преждевременное прекращение проце­дуры записи, необходимо перевести сигнал  в неактивное состоя­ние. Как показано на Рис. 18, прекращение процедуры начнется с прихо­дом нарастающего фронта CCLK.

6.1.4. Использование резкима периферийного сканирования для конфигурирования Virtex

Для конфигурирования в режиме периферийного сканирования исполь­зуются только специальные контакты порта тестового доступа (Test Access Port — ТАР) в соответствии со стандартом IEEE 1149.1.

Конфигурирование через порт ТАР выполняется с помощью специаль­ной команды CFG_IN. Эта команда позволяет преобразовать входные дан­ные, поступающие на вход TDI, в пакет данных для внутренней шины кон­фигурирования.

Для конфигурирования FPGA через порт периферийного сканирования необходимо выполнить следующие действия:

1. Загрузить   команду  CFG_IN   во   внутренний   регистр   команд (instruction register — IR).

2. Ввести состояние Shift-DR (SDR).

3. Выдать стандартный конфигурационный bitstream на TDI.

4. Возвратиться к состоянию Run-Test-Idle (RTI).

5. Загрузить в регистр IR команду JSTART.

6. Ввести состояние SDR.

7. Выдать   ТСК   для   длины   последовательности   (длина программируемая).

8. Возвратиться к состоянию RT1.

Как отмечалось ранее, конфигурирование и обратное считывание все­гда доступно в режиме периферийного сканирования. Для выборки режи­ма необходимо подать код <101> или <001> на контакты М2, Ml, М0.

6.2. Последовательность конфигурации

Конфигурирование устройств Virtex -- процесс, состоящий из трех фаз. В первой фазе конфигурирования очищается память. Следующая фа­за — загрузка данных в конфигурационную память. Наконец, активизиру­ется логика (фаза Start-Up).

Обычно процесс конфигурирования запускается автоматически после подачи напряжения питания, однако, как будет описано далее, он может быть задержан пользователем. Конфигурационный процесс может также быть инициирован установкой активного уровня сигнала . Пе­реход сигнала  в состояние ‘1’ означает окончание фазы очистки па­мяти, а установка активного уровня сигнала DONE (‘1’) означает оконча­ние процесса в целом.

Временная диаграмма для конфигурационных сигналов после подачи напряжения питания показана на Рис. 19, а соответствующие временные характеристики — в Табл. 12.

 

6.2.1. Задержка конфигурирования

Конфигурирование FPGA может быть задержано удержанием сигнала на контакте  в, состоянии низкого логического уровня до мо­мента готовности системы к конфигурированию. На протяжении фазы очистки конфигурационной памяти последовательность операций состоит из повторения цикла очистки памяти по всем адресам. Эти операции про­должаются до окончания одного полного цикла очистки памяти по всем адресам после установки сигнала на входе  в состояние ‘1’. Та­ким образом, задержка процесса конфигурирования равнозначна продол­жению фазы очистки памяти.

Таблица 12. Значения временных параметров при подаче питания.

Параметр

Значение
min max

2.0 мс

100 мкс

0.5 мкс 4.0 мкс

300 нс

Другой вариант — подача от источника с открытым стоком сигнала низкого уровня на вход . Источник сигнала с открытым стоком необ­ходим потому, что контакт  — двунаправленный и работает как выход, имеющий низкий логический уровень во время фазы очистки памяти. Уве­личение времени удержания низкого логического уровня на этом контакте приводит, к тому, что конфигурационный автомат продолжает выполнять фазу очистки памяти. Таким образом, процесс конфигурирования задер­живается, не входя в фазу загрузки данных.

 

6.2.2. Последовательность вхождения в штатный режим работы

При выполнении вхождения в штатный режим работы по умолчанию глобальный сигнал управления третьим состоянием (global tristate - GTS) активизируется через один цикл CCLK после перехода сигнала DONE в состояние ‘1’. Это позволяет выходам FPGA включиться надле­жащим образом.

Одним циклом CCLK позже активизируются сигнал глобальной уста­новки/сброса (Global Set/Reset — GSR) и глобального разрешения записи (Global Write Enable — GWE). Это создает условия для начала нормальной работы внутренних запоминающих элементов.

Временная диаграмма для этих событий может быть изменена. Кроме того, события GTS, GSR и GWE могут активизироваться после перехода всех выходов DONE в высокое состояние при конфигурировании множе­ственных устройств FPGA, что позволяет начинать их работу в штатном режиме синхронно. Во время выполнения последовательности допускает­ся включение на любой фазе паузы до момента нормального захвата сле­дящей системы схемы автоподстройки задержки (DLL).

6.3. Формат потока конфигурационных данных

Кристаллы Virtex конфигурируются последовательной загрузкой в них фреймов данных, которые объединены в двоичный поток (bitstream). В Табл. 13 представлены объемы конфигурационной последовательности для кристаллов Virtex.

Таблица 13. Размер конфигурационной последовательности для различных микросхем семейства Virtex

Кристалл

Конфигурационные биты
XCV50 559 200
XCV100 781 216
XCV150 1 040 096
XCV200 1 335 840
XCV300 1 751 808
XCV400 2 546 048
XCV600 3 607 968
XCV800 4 715 616
XCV1000 6 127 744

7.  Обратное считывание

Конфигурационные данные, записанные в конфигурационной памяти FPGA, могут быть считаны обратно для выполнения верификации. Наряду с этими данными возможно обратное считывание содержимого всех триггеров/защелок, LUTRAMs, BlockRAMs. Эта возможность используется для выполнения отладки проектов в реальном масштабе времени.


8. Характеристики микросхем семейства Virtex по постоянному току

В Табл. 14 приведены максимально допустимые значения параметров микросхем семейства Virtex по постоянному току.

Таблица 14. Диапазон максимально допустимых значений параметров микросхем семейства Virtex по постоянному току

Обозна-чение

Описание Значение Единица измерения

Напряжение питания ядра относительно GND -0.5…3.0 В

Напряжение питания выходных каскадов относительно GND -0.5…4.0 В

Входное опорное напряжение -0.5…3.6 В

Напряжение входного сиг-нала относительно GND

Используя

-0.5…3.6 В

Не используя

-0.5…5.5 В

Напряжение, прикладываемое к 3-стабильному выходу -0.5…5.5 В

Максимальное время нарастания напряжения питания от 1 до 2.375 В 50 мс

Температура хранения (окружающей среды) -65…+150 °C

Максимальная температура припоя +260 °C

Максимальная рабочая температура контактов +125 °C

Внимание! Превышение максимальных значений ведет к повреждению кристалла.

В Табл. 15 приведены рекомендуемые значения параметров микросхем семейства Virtex по постоянному току.

Таблица 15. Рекомендуемые значения

Обозна-чение

Описание Значения Единица измерения
min max

Напряжение питания ядра при =0…+85 °C (коммерческое исполнение)

2.5 - 5% 2.5 + 5% В

Напряжение питания ядра при =0…+85 °C (промышленное исполнение)

2.5 – 5% 2.5 + 5% В

Напряжение питания выходных каскадов при =0…+85 °C (коммерческое исполнение)

1.4 3.6 В

Напряжение питания выходных каскадов при =0…+85 °C (промышленное исполнение)

1.4 3.6 В

Время передачи входного сигнала 250 нс

9. Корпуса

В Табл. 16 приведены комбинации: кристалл Virtex — корпус, и число пользовательских выводов для каждой комбинации.

Таблица 16. Корпуса.

Корпус Максимальное число пользовательских контактов
XCV50 XCV100 XCV150 XCV200 XCV300 XCV400 XCV600 XCV800 XCV1000
CS-144 94 94
TQ-144 98 98
PQ-240 166 166 166 166 166
HQ-240 166 166 166
BG-256 180 180 180 180
BG-352 260 260 260
BG-432 316 316 316 316
BG-560 404 404 404 404
FG-256 176 176 176 176
FG-456 260 284 312
FG-676 404 444 444
FG-680 512 512 512

10. Обозначение микросхем семейства Virtex

Способ обозначения микросхем семейства Virtex показан на Рис. 20.


Страницы: 1, 2, 3, 4


на тему рефераты
НОВОСТИ на тему рефераты
на тему рефераты
ВХОД на тему рефераты
Логин:
Пароль:
регистрация
забыли пароль?

на тему рефераты    
на тему рефераты
ТЕГИ на тему рефераты

Рефераты бесплатно, реферат бесплатно, курсовые работы, реферат, доклады, рефераты, рефераты скачать, рефераты на тему, сочинения, курсовые, дипломы, научные работы и многое другое.


Copyright © 2012 г.
При использовании материалов - ссылка на сайт обязательна.