![]() |
|
|
Реферат: Обзор процессоров и шин ПВМ начиная с 386 машин═════════════════════════════════════════════════════════════════ MULTIBUS I - 22 - 4.3 Пример интерфейса магистрали MULTIBUS I Один из способов организации взаимодействия между МП 80386 и магистралью MULTIBUS I заключается в генерации всех сигналов MULTIBUS I c помощью программируемых логических матриц (ПЛМ) и схем ТТЛ. Проще использовать интерфейс, совместимый с МП 80286. Основные черты этого интерфейса описаны ниже. Интерфейс магистрали MULTIBUS I состоит из совместимого с МП 80286 арбитра магистрали 82288. Контроллер может работать как в режиме локальной магистрали, так и в режиме MULTIBUS I; резистор на входе МВ схемы 82288, подключенный к источнику пи- тания, активизирует режим MULTIBUS I. Выходной сигнал MBEN де- шифратора адреса на ПЛМ служит сигналом выбора обеих микросхем 82288 и 828289. Сигнал AEN # с выхода 82289 открывает выходы контроллера 82288. Взаимодействие между процессором 80386 и этими двумя уст- ройствами осуществляется с помощью ПЛМ, в которые записаны программы генерации и преобразования необходимых сигналов. Ар- битр 82289 вместе с арбитрами магистрали других вычислительных подсистем координирует управление магистралью MULTIBUS I, обеспечивая управляющие сигналы, необходимые для получения доступа к ней. В системе MULTIBUS I каждая вычислительная подсистема пре- тендует на использование общих ресурсов. Если подсистема зап- рашивает доступ к магистрали, когда другая система уже исполь- зует магистраль, первая подсистема должна ожидать ее освобож- дения. Логика арбитража магистрали управляет доступом к ма- гистрали всех подсистем. Каждая вычислительная подсистема име- ет собственный арбитр магистрали 82289. Арбитр подключает свой - 23 - процессор к магистрали и разрешает доступ к ней ведущим с бо- лее высоким или более низким приоритетом в соответствии с за- ранее установленной схемой приоритетов. Возможны два варианта процедуры управления занятием магист- рали: с последовательным и параллельным приоритетом. Схема последовательного приоритета реализуется путем соединения це- почкой входов приоритета магистрали (BPRN #) и выходов приори- тета магистрали (BPRO #) всех арбитров магистрали в системе. Задержка, возникающая при таком соединении, ограничивает число подключаемых арбитров. Схема параллельного приоритета требует наличия внешнего арбитра, который принимает входные сигналы BPRN # от всех арбитров магистрали и возвращает активный сиг- нал BPRО # запрашивающему арбитру с максимальным приоритетом. Максимальное число арбитров , участвующих в схеме с параллель- ным приоритетом, определяется сложностью схемы дешифрации. После завершения цикла MULTIBUS I арбитр, занимающий ма- гистраль, либо продолжает ее удерживать, либо освобождает с передачей другому арбитру. Процедура освобождения магистрали может быть различной. Арбитр может освобождать магистраль в конце каждого цикла, удерживать магистраль до тех пор пока не будет затребована ведущим с более высоким приоритетом, или освобождать магистраль при поступлении запроса от ведущего с любым приоритетом. Система MULTIBUS I с 24 линиями адреса и 16 линиями данных. Адреса системы расположены в диапазоне 256 кбайт (между F00000H и F3FFFFH), причем используются все 24 линии. 16 линий данных представляют младшую половину (младшие 16 разрядов) 32- разрядной шины данных МП 80386. Адресные разряды MULTIBUS I - 24 - нумеруются в шеснадцатеричной системе; А23-А0 В МП 80386 ста- новятся ADR17# - ADR0# в системе MULTIBUS I. Инвертирующие ад- ресные фиксаторы поразрядно преобразуют выходные сигналы адре- са МП 80386 в адресные сигналы с низким активным уровнем для магистрали MULTIBUS I. Дешифратор адреса. Система MULTIBUS I обычно включает и об- щую, и локальную память. Устройства ввода-вывода (УВВ) также могут быть расположены как на локальной магистрали, так и на MULTIBUS I. Отсюда следует, что: 1) пространство адресов МП 80386 должно быть разделено между MULTIBUS I и локальной ма- гистралью и 2) должен использоваться дешифратор адресов для выбора одной из двух магистралей. Для выбора магистрали MULTI- BUS I требуются два сигнала: 1. Сигнал разрешения MULTIBUS I (MBEN) служит сигналом вы- бора контроллера магистрали 82288 и арбитра магистрали 82289 в схеме сопряжения с MULTIBUS I. Другие выходы ПЛМ дешифратора служат для выбора памяти и УВВ на локальной магистрали. 2. Для обеспечения 16-разрядного цикла магистрали процессо- ру 80386 должен быть возвращен активный сигнал размера шины BS16#. К уравнению ПЛМ, описывающему условия возбуждения сиг- нала BS16#, могут быть добавлены дополнительные члены для дру- гих устройств, требующих 16-разрядной шины. Ресурсы ввода-вывода, подключенные к магистрали MULTIBUS I, могут быть отображены на отдельное пространство адресов вво- да-вывода, независимых от физического расположения устройств на магистрали I, либо отображены на пространство адресов памя- ти МП 80386. Адреса УВВ, отображенных на пространство памяти, должны декодироваться для возбуждения правильных команд вво- - 25 - да-вывода. Это декодирование должно осуществляться для всех обращений к памяти, попадающих в область отображения адресов ввода-вывода. Адресные фиксаторы и приемопередатчики данных. Адрес во всех циклах магистрали должен фиксироваться, потому что по протоколу MULTIBUS I на адресных входах должен удерживаться достоверный адрес по крайней мере 50 нс после того, как коман- да MULTIBUS I становится пассивной. Сигнал разрешения адреса (AEN#) на выходе арбитра магистрали 82289 становится активным, как только арбитр получает управление магистралью MULTIBUS I. Сигнал AEN# действует как разрешающий для фиксаторов MULTIBUS I. Как показано на рис. 6 выходной сигнал ALE# контроллера ма- гистрали 82288 фиксирует адрес от МП 80386. Рис.6 Адрес Данные А23-А0 │ D15-D0 │ ┌──────────────┐ ALE# ┌───────────────┐ DEN │ Инвертирующий ├─────── │ Инвертирующие ├───── │ фиксатор │ (От 82288) │ фиксаторы/прие-│ └──────┬────────┘ │ мопередатчики ├───── AD17#- │ └──────┬─────────┘ DT/R# AD0# DATF#- │ (От 82288) DAT0# Разряды данных MULTIBUS I нумеруются в шестнадцатеричной системе, так что D15-D0 превращается в DATF#-DAT0#. Инвертиру- ющие факторы и приемопередатчики вырабатывают низкий активный - 26 - уровень для магистрали MULTIBUS I. Данные фиксируются только в циклах записи. Во время цикла записи адресными фиксаторами и фиксаторами - приемопередатчиками данных управляют входные сигналы ALE#, DEN и DT/R# от контроллера 82288. В циклах чте- ния фиксаторы - приемопередатчики управляются сигналом локаль- ной магистрали RD#. Если при использовании сигнала DEN за ло- кальным циклом записи немедленно последует цикл чтения MULTI- BUS I, на локальной магистрали МП 80386 возникнет конфликтная ситуация. 4.4 Магистраль расширения ввода-вывода iSBX Магистраль iSBX независима от типа процессора или платы. Каждый интерфейс расширения непосредственно поддерживает до 8-разрядных портов ввода-вывода. Посредством ведомых процессо- ров или процессоров с плавающей точкой обеспечивается расшире- ние адресных возможностей. Кроме того, каждый интерфейс расши- рения может при необходимости поддерживать канал ПДП со ско- ростью передачи до 2 Мслов/с Магистраль iSBX включает два основных элемента: базовую плату и модуль расширения. Базовая плата - это любая плата с одним или несколькими интерфейсами расширения ввода-вывода (коннекторами), удовлетворяющими электрическим и механическим требованиям спецификации Intel. Естественно, базовая плата всегда является ведущим устройством, она генерирует все адре- са, сигналы выбора и команды. Модуль расширения магистрали iSBX представляет собой не- большую специализированную плату ввода-вывода, подключенную к - 27 - базовой плате. Модуль может иметь одинарную или двойную шири- ну. Назначение модуля расширения - преобразование протокола основной магистрали в протокол конкретного устройства вво- да-вывода. Расширение функций,реализуемых каждой системной платой, подключенной к магистрали MULTIBUS I, повышает производитель- ность системы, потому что для доступа к таким резидентным функциям не требуется арбитраж магистрали. 4.5 Многоканальная магистраль Многоканальная магистраль представляет собой специализиро- ванный электрический и механический протокол, действующий как составная часть системы MULTIBUS I. Эта магистраль предназна- чена для скоростной блочной пересылки данных между системой MULTIBUS I и взаимосвязанными перефирийными устройствами. В тех случаях, когда требуется пересылать группу байтов или слов, расположенных (или распологаемых) по последовательным адресам, протокол блочной пересылки данных уменьшает непроиз- водительные потери. Передача осуществляется в асинхронном ре- жиме с использованием протокола подтверждений и с проверкой четности, обеспечивающей правильность передачи данных. Улучшению характеристик системы MULTIBUS I способствует уменьшение влияния на ее производительность оборудования па- кетного типа. Потоки данных от пакетных устройств могут ис- пользовать интерфейс общего назначения. Протокол многоканаль- ной магистрали специально приспособлен для пакетных пересылок - 28 - данных. Максимальный выигрыш в производительности получается при использовании двухпортовой памяти с доступом как со сторо- ны многоканальной магистрали, так и со стороны интерфейса MUL- TIBUS I. 4.6 Магистраль локального расширения iLBX Магистраль iLBX предназначена для непосредственных скорост- ных передач данных между ведущими и ведомыми и обеспечивает: 1) максимум два ведущих на магистрали, что упрощает процедуру арбитража; 2) асинхронный по отношению к передаче данных ар- битраж магистрали; 3) минимум два и максимум пять устройств, связанных с магистралью; 4) ведомые устройства, определяемые как ресурсы памяти с байтовой адресацией, и 5) ведомые уст- ройства, функции которых непосредственно контролируются сигна- лами линий магистрали iLBX. Увеличение локальных (на плате) ресурсов памяти высокопро- изводительного процессора улучшает характеристики всей систе- мы. Что касается других специальных функций, то наличие на процессорной плате памяти повышает производительность, пос- кольку процессор может адресовать непосредственно, не ожидая результатов арбитража магистрали. С другой стороны, в силу пространственных ограничений на процессорной плате удается разместить память лишь небольшого обьема. Магистраль iLBX поз- воляет снизить эти пространственные ограничения. При использо- вании магистрали iLBX нет необходимости в размещении дополни- тельной памяти на процессорной плате. Вся память (обьемом до - 29 - нескольких десятков Мбайт), адресуемая процессором, доступна через магистраль iLBX и представляется процессору размещенной на процессорной плате. Наличие в системе памяти двух портов - одного для обмена с магистралью iLBX, а другого для обмена с магистралью MULTIBUS I - делает доступной эту память другим компонентам системы. К магистрали iLBX можно подключить до пя- ти устройств. В число устройств должны входить первичный веду- щий и один ведомый. Остальные три устройства не являются обя- зательными. Первичный ведущий управляет магистралью iLBX и ор- ганизует доступ вторичного ведущего к ресурсам ведомой памяти. Вторичный ведущий, если он есть, предоставляет дополнительные возможности доступа к ведомым ресурсам по магистрали iLBX. 4.7 MULTIBUS II Архитектура системы MULTIBUS II является процесорно-незави- симой. Она отличается наличием 32-разрядной параллельной сис- темной магистралью с максимальной скоростью передачи 40 Мбайт/с, недорогой последовательной системной магистрали и быстродействующей локальной магистрали для доступа к отдельным платам памяти. MULTIBUS II включает пять магистралей Intel: 1) локального расширения (iLBX II), 2) многоканального доступа к памяти, 3) параллельную системную (iPSB), 4) последовательную системную (iSSB) и 5) параллельную расширения ввода-вывода (iSBX). Структура с несколькими магистралями имеет преимущества пе- ред одномагистральной системой. В частности каждая магистраль - 30 - оптимизирована для выполнения определенных функций, а опера- ции на них выполняются параллельно. Кроме того, магистрали, не используемые в конкретной системе, могут быть исключены из ее архитектуры, что избавляет от неоправданных затрат. Три ма- гистрали из перечисленных кратко описаны ниже. 4.7.1 Параллельная системная магистраль iPSB. Параллельная системная магистраль iPSB используется для межпроцессорных пересылок данных и взаимосвязи процессоров. Магистраль поддерживает пакетную передачу с максимальной пос- тоянной скоростью 40 Мбайт/с. Связной магистрали представляет собой плату, объединяющую функциональную подсистему. Каждый связной магистрали должен иметь средства передачи данных между МП 80386, его регистрами межсоединений и магистралью iPSB. Магистраль iPSB представляет каждому связному магистрали четыре пространства адресов: 1) обычного ввода-вывода, 2) обычной памяти 3) пространство памя- ти объемом до 255 адресов для передачи сообщений и 4) прост- ранство межсоединений. Последнее обеспечивает графическую ад- ресацию, при которой идентификация связного магистрали (платы) осуществляется по номеру позиции, на которой установлена пла- та. Поскольку МП 80386 имеет доступ только к пространствам па- мяти или ввода-вывода, пространства сообщений и межсоединений следует отображать на первые два пространства. Операции на магистрали iPSB осуществляются посредством трех циклов магистрали. Цикл арбитража определяет следующего вла- - 31 - дельца магистрали. Этот цикл состоит из двух фаз: фазы приня- тия решения, на которой определяется приоритет для управления магистралью, и фазы захвата, когда связной с наивысшим приори- тетом начинает цикл пересылки. Второй цикл магистрали iPSB - цикл пересылки, реализует пе- ресылку данных между владельцем и другим связным. Третий цикл iPSB - цикл исключения, указывает на возбуждение исключения в течении цикла пересылки. 4.7.2 Магистраль локального расширения iLBX II Магистраль локального расширения iLBX II является быстро- действующей магистралью, предназначенной для быстрого доступа к памяти, расположенной на отдельных платах. Одна магистраль iLBX II поддерживает либо две процессорные подсистемы плюс че- тыре подсистемы памяти, либо одну процессорную подсистему плюс пять подсистем памяти. При необходимости иметь большой объем памяти система MULTIBUS II может включать более одной магист- рали iLBX II. В системе на базе МП 80386 с тактовой частотой 16 МГц типичный цикл доступа iLBX требует 6 циклов ожидания. Для магистрали iLBX характерны 32-разрядная шина данных и 26-разрядная шина адресов. Поскольку эти шины разделены, воз- никает возможность конвейерных операций в цикле пересылки. К дополнительным особенностям магистрали iLBX относятся: 1) од- нонаправленное подтверждение при быстрой пересылке данных, 2) пространство межсоединений (для каждого связного магистрали), через которое первичный запрашивающий связной инициализирует и - 32 - настраивает всех остальных связных магистрали, и 3) средство взаимного исключения, позволяющее управлять многопортовой па- мятью. 4.7.3 Последовательная магистраль iSSB Относительно дешевая последовательная системная магистраль iSSB может использоваться вместо параллельной системной ма- гистрали iPSB в тех случаях, когда не требуется высокая произ- водительность последней. Магистраль iSSB может содержать до 32 связных магистрали, распределенных на длине максимум 10 м. Уп- равление магистралью ведется с помощью стандартного протокола множественного доступа с опросом несущей и разрешением конф- ликтов (CSMA/CD). Связные магистрали используют этот протокол для передачи данных по мере своей готовности. В случае однов- ременного инициирования передачи двумя или несколькими связны- ми вступает в действие алгоритм разрешения конфликтов обеспе- чивающий справедливое предоставление доступа всем запрашиваю- щим связным. 5.1 Ведущие Ведущим является любой модуль, который обладает возмож- ностью захвата магистрали. Модуль захватывает магистраль с по- мощью логических схем обмена и инициирует передачу данных по магистрали, используя для этого либо встроенные процессоры, - 33 - либо специальные логические схемы. Ведущие генерируют сигналы сигналы управления, адресные сигналы, а также адреса памяти или устройств ввода-вывода. Ведущий может работать в одном из двух режимов: режиме 1 или режиме 2. В режиме 1 ведущий ограничен одной передачей по магистрали через каждое подключение к шине. Если все ведущие в системе используют режим 1, скорость работы системы ограничи- вается максимальной величиной цикла занятости магистрали. Это позволяет разработчикам прогнозировать общую производитель- ность конкретной системы. В режиме 2 у ведущих больше возможностей захвата магистра- ли, они могут инициировать обмен с наложением на текущую опе- рацию. В этом режиме разрешены тайм-ауты магистрали, и опера- ции ведущих не ограничены максимальной величиной цикла заня- тости магистрали. Режим 2 обеспечивает широкий класс операций, что придает системе гибкость при удовлетворении запросов поль- зователей. 5.2 Ведомые - 34 - Устройства ввода- вывода пользователя ╔═════════╤═════╤═══════╗ ‑ ‑ ║ Ведущий │ ЦП │ ║ │ │ ║ └─────┘ ║ - 12 - ╔══════════════════╗ ╔═══════════════╗ ╟────────┐ ‑ ┌──────╢ ║ Ведомый ║ ║ Ведомый ║ ║ Обмен с│ │ │Ввод- ║ ║ ║ ╟────────┬────────╢ ║ магис- │ │ │вывод ║ ║ Глобальный ║ ║Парал- │Последо-║ ║ тралью │ │ └──────╢ ║ (системный) ║ ║лельный │ватель- ║ ╟──┬─────┘ │ ┌──────╢ ║ ввод-вывод ║ ║ввод-вы-│ный ввод║ ║ │ │_─_│Память║ |
|
|||||||||||||||||||||||||||||
![]() |
|
Рефераты бесплатно, реферат бесплатно, курсовые работы, реферат, доклады, рефераты, рефераты скачать, рефераты на тему, сочинения, курсовые, дипломы, научные работы и многое другое. |
||
При использовании материалов - ссылка на сайт обязательна. |