на тему рефераты
 
Главная | Карта сайта
на тему рефераты
РАЗДЕЛЫ

на тему рефераты
ПАРТНЕРЫ

на тему рефераты
АЛФАВИТ
... А Б В Г Д Е Ж З И К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я

на тему рефераты
ПОИСК
Введите фамилию автора:


Реферат: Обзор процессоров и шин ПВМ начиная с 386 машин


  ═════════════════════════════════════════════════════════════════

                          MULTIBUS I

                                - 22 -

            4.3  Пример интерфейса магистрали  MULTIBUS I

        Один из  способов организации взаимодействия между МП 80386

     и магистралью MULTIBUS I заключается в генерации всех сигналов

     MULTIBUS I c помощью программируемых логических матриц (ПЛМ) и

     схем ТТЛ.  Проще  использовать  интерфейс,  совместимый  с  МП

     80286. Основные черты этого интерфейса описаны ниже.

        Интерфейс магистрали MULTIBUS I состоит из  совместимого  с

     МП 80286  арбитра магистрали 82288.  Контроллер может работать

     как в режиме локальной магистрали,  так и в режиме MULTIBUS I;

     резистор на входе МВ схемы 82288, подключенный к источнику пи-

     тания, активизирует режим MULTIBUS I. Выходной сигнал MBEN де-

     шифратора адреса на ПЛМ служит сигналом выбора обеих микросхем

     82288 и 828289.  Сигнал AEN # с выхода 82289 открывает  выходы

     контроллера 82288.

        Взаимодействие между процессором 80386 и этими  двумя  уст-

     ройствами осуществляется  с  помощью  ПЛМ,  в которые записаны

     программы генерации и преобразования необходимых сигналов. Ар-

     битр 82289 вместе с арбитрами магистрали других вычислительных

     подсистем координирует  управление  магистралью  MULTIBUS   I,

     обеспечивая управляющие  сигналы,  необходимые  для  получения

     доступа к ней.

        В системе  MULTIBUS I каждая вычислительная подсистема пре-

     тендует на использование общих ресурсов.  Если подсистема зап-

     рашивает доступ к магистрали, когда другая система уже исполь-

     зует магистраль,  первая подсистема должна ожидать ее освобож-

     дения.  Логика  арбитража  магистрали управляет доступом к ма-

     гистрали всех подсистем. Каждая вычислительная подсистема име-

     ет собственный арбитр магистрали 82289. Арбитр подключает свой

                                - 23 -

     процессор к магистрали и разрешает доступ к ней ведущим с  бо-

     лее  высоким или более низким приоритетом в соответствии с за-

     ранее установленной схемой приоритетов.

        Возможны два варианта процедуры управления занятием магист-

     рали: с последовательным  и  параллельным  приоритетом.  Схема

     последовательного приоритета  реализуется путем соединения це-

     почкой входов приоритета магистрали (BPRN #) и выходов приори-

     тета магистрали  (BPRO  #) всех арбитров магистрали в системе.

     Задержка, возникающая при таком соединении, ограничивает число

     подключаемых арбитров.  Схема параллельного приоритета требует

     наличия внешнего арбитра,  который принимает  входные  сигналы

     BPRN #  от всех арбитров магистрали и возвращает активный сиг-

     нал BPRО # запрашивающему арбитру с максимальным  приоритетом.

     Максимальное число арбитров , участвующих в схеме с параллель-

     ным приоритетом, определяется сложностью схемы дешифрации.

        После завершения  цикла  MULTIBUS I арбитр,  занимающий ма-

     гистраль, либо продолжает ее удерживать,  либо  освобождает  с

     передачей другому  арбитру.  Процедура освобождения магистрали

     может быть различной.  Арбитр может освобождать  магистраль  в

     конце каждого цикла,  удерживать магистраль до тех пор пока не

     будет затребована ведущим с  более  высоким  приоритетом,  или

     освобождать магистраль  при  поступлении запроса от ведущего с

     любым приоритетом.

        Система MULTIBUS I с 24 линиями адреса и 16 линиями данных.

     Адреса системы  расположены  в  диапазоне  256  кбайт   (между

     F00000H и F3FFFFH), причем используются все 24 линии. 16 линий

     данных представляют младшую половину (младшие 16 разрядов) 32-

     разрядной шины  данных  МП 80386.  Адресные разряды MULTIBUS I

                                - 24 -

     нумеруются в шеснадцатеричной системе;  А23-А0 В МП 80386 ста-

     новятся ADR17# - ADR0# в системе MULTIBUS I. Инвертирующие ад-

     ресные фиксаторы поразрядно преобразуют выходные сигналы адре-

     са МП  80386  в адресные сигналы с низким активным уровнем для

     магистрали MULTIBUS I.

        Дешифратор адреса. Система MULTIBUS I обычно включает и об-

     щую, и локальную память.  Устройства ввода-вывода (УВВ)  также

     могут быть  расположены как на локальной магистрали,  так и на

     MULTIBUS I.  Отсюда следует,  что:  1) пространство адресов МП

     80386 должно  быть  разделено между MULTIBUS I и локальной ма-

     гистралью и 2) должен использоваться  дешифратор  адресов  для

     выбора одной из двух магистралей. Для выбора магистрали MULTI-

     BUS I требуются два сигнала:

        1. Сигнал  разрешения MULTIBUS I (MBEN) служит сигналом вы-

     бора контроллера магистрали 82288 и арбитра магистрали 82289 в

     схеме сопряжения  с MULTIBUS I.  Другие выходы ПЛМ дешифратора

     служат для выбора памяти и УВВ на локальной магистрали.

        2. Для обеспечения 16-разрядного цикла магистрали процессо-

     ру 80386 должен быть возвращен активный  сигнал  размера  шины

     BS16#. К уравнению ПЛМ,  описывающему условия возбуждения сиг-

     нала BS16#, могут быть добавлены дополнительные члены для дру-

     гих устройств, требующих 16-разрядной шины.

        Ресурсы ввода-вывода, подключенные к магистрали MULTIBUS I,

     могут  быть  отображены на отдельное пространство адресов вво-

     да-вывода,  независимых от физического расположения  устройств

     на магистрали I, либо отображены на пространство адресов памя-

     ти МП 80386.  Адреса УВВ, отображенных на пространство памяти,

     должны  декодироваться  для возбуждения правильных команд вво-

                                - 25 -

     да-вывода.  Это декодирование должно осуществляться  для  всех

     обращений  к памяти,  попадающих в область отображения адресов

     ввода-вывода.

        Адресные фиксаторы  и  приемопередатчики  данных.  Адрес во

     всех циклах магистрали должен  фиксироваться,  потому  что  по

     протоколу MULTIBUS  I  на  адресных входах должен удерживаться

     достоверный адрес по крайней мере 50 нс после того, как коман-

     да MULTIBUS  I становится пассивной.  Сигнал разрешения адреса

     (AEN#) на выходе арбитра магистрали 82289 становится активным,

     как только  арбитр получает управление магистралью MULTIBUS I.

     Сигнал AEN# действует как разрешающий для фиксаторов  MULTIBUS

     I. Как показано на рис. 6 выходной сигнал ALE# контроллера ма-

     гистрали 82288 фиксирует адрес от МП 80386.

                                                        Рис.6

       Адрес                           Данные

       А23-А0   │                      D15-D0  │

         ┌──────­────────┐ ALE#         ┌──────­─────────┐ DEN

         │ Инвертирующий ├───────       │ Инвертирующие  ├─────

         │  фиксатор     │ (От 82288)   │ фиксаторы/прие-│

         └──────┬────────┘              │ мопередатчики  ├─────

       AD17#-   │                       └──────┬─────────┘ DT/R#

       AD0#     ­                      DATF#-  │           (От 82288)

                                       DAT0#   ­

        Разряды данных  MULTIBUS  I  нумеруются в шестнадцатеричной

     системе, так что D15-D0 превращается в DATF#-DAT0#. Инвертиру-

     ющие факторы  и приемопередатчики вырабатывают низкий активный

                                - 26 -

     уровень для магистрали MULTIBUS I. Данные фиксируются только в

     циклах записи.  Во  время цикла записи адресными фиксаторами и

     фиксаторами -  приемопередатчиками  данных  управляют  входные

     сигналы ALE#,  DEN и DT/R# от контроллера 82288. В циклах чте-

     ния фиксаторы - приемопередатчики управляются сигналом локаль-

     ной магистрали RD#.  Если при использовании сигнала DEN за ло-

     кальным циклом записи немедленно последует цикл чтения  MULTI-

     BUS I,  на локальной магистрали МП 80386 возникнет конфликтная

     ситуация.

              4.4 Магистраль расширения ввода-вывода iSBX

        Магистраль iSBX независима от типа  процессора  или  платы.

     Каждый интерфейс  расширения  непосредственно  поддерживает до

     8-разрядных портов ввода-вывода. Посредством ведомых процессо-

     ров или процессоров с плавающей точкой обеспечивается расшире-

     ние адресных возможностей. Кроме того, каждый интерфейс расши-

     рения может  при  необходимости поддерживать канал ПДП со ско-

     ростью передачи до 2 Мслов/с

        Магистраль iSBX  включает  два  основных элемента:  базовую

     плату и модуль расширения.  Базовая плата - это любая плата  с

     одним или  несколькими  интерфейсами  расширения  ввода-вывода

     (коннекторами), удовлетворяющими электрическим и  механическим

     требованиям спецификации  Intel.  Естественно,  базовая  плата

     всегда является ведущим устройством,  она генерирует все адре-

     са, сигналы выбора и команды.

        Модуль расширения магистрали iSBX  представляет  собой  не-

     большую специализированную плату ввода-вывода,  подключенную к

                                - 27 -

     базовой плате.  Модуль может иметь одинарную или двойную шири-

     ну. Назначение  модуля  расширения  - преобразование протокола

     основной магистрали в  протокол  конкретного  устройства  вво-

     да-вывода.

        Расширение функций,реализуемых  каждой  системной   платой,

     подключенной к магистрали MULTIBUS I,  повышает производитель-

     ность системы,  потому что для  доступа  к  таким  резидентным

     функциям не требуется арбитраж магистрали.

                   4.5  Многоканальная магистраль

        Многоканальная магистраль представляет собой  специализиро-

     ванный электрический и механический протокол,  действующий как

     составная часть системы MULTIBUS I.  Эта магистраль предназна-

     чена  для  скоростной  блочной пересылки данных между системой

     MULTIBUS I и взаимосвязанными  перефирийными  устройствами.  В

     тех  случаях,  когда  требуется  пересылать  группу байтов или

     слов,  расположенных (или распологаемых)  по  последовательным

     адресам,  протокол блочной пересылки данных уменьшает непроиз-

     водительные потери.  Передача осуществляется в асинхронном ре-

     жиме  с  использованием  протокола подтверждений и с проверкой

     четности, обеспечивающей правильность передачи данных.

        Улучшению характеристик  системы  MULTIBUS  I  способствует

     уменьшение влияния на ее производительность  оборудования  па-

     кетного типа.  Потоки  данных  от пакетных устройств могут ис-

     пользовать интерфейс общего назначения.  Протокол многоканаль-

     ной магистрали  специально приспособлен для пакетных пересылок

                                - 28 -

     данных. Максимальный выигрыш в  производительности  получается

     при использовании двухпортовой памяти с доступом как со сторо-

     ны многоканальной магистрали, так и со стороны интерфейса MUL-

     TIBUS I.

               4.6  Магистраль локального расширения iLBX

        Магистраль iLBX предназначена для непосредственных скорост-

     ных передач  данных  между ведущими и ведомыми и обеспечивает:

     1) максимум два ведущих на магистрали,  что упрощает процедуру

     арбитража; 2)  асинхронный  по отношению к передаче данных ар-

     битраж магистрали;  3) минимум два и максимум пять  устройств,

     связанных с магистралью;  4) ведомые устройства,  определяемые

     как ресурсы памяти с байтовой адресацией,  и 5)  ведомые  уст-

     ройства, функции которых непосредственно контролируются сигна-

     лами линий магистрали iLBX.

        Увеличение локальных  (на плате) ресурсов памяти высокопро-

     изводительного процессора улучшает характеристики всей  систе-

     мы. Что  касается  других  специальных функций,  то наличие на

     процессорной плате памяти  повышает  производительность,  пос-

     кольку процессор  может адресовать непосредственно,  не ожидая

     результатов арбитража магистрали.  С другой  стороны,  в  силу

     пространственных ограничений  на  процессорной  плате  удается

     разместить память лишь небольшого обьема. Магистраль iLBX поз-

     воляет снизить эти пространственные ограничения. При использо-

     вании магистрали iLBX нет необходимости в размещении  дополни-

     тельной памяти  на процессорной плате.  Вся память (обьемом до

                                - 29 -

     нескольких десятков Мбайт),  адресуемая процессором,  доступна

     через магистраль  iLBX и представляется процессору размещенной

     на процессорной плате.  Наличие в системе памяти двух портов -

     одного для  обмена с магистралью iLBX,  а другого для обмена с

     магистралью MULTIBUS I - делает доступной  эту  память  другим

     компонентам системы. К магистрали iLBX можно подключить до пя-

     ти устройств. В число устройств должны входить первичный веду-

     щий и один ведомый.  Остальные три устройства не являются обя-

     зательными. Первичный ведущий управляет магистралью iLBX и ор-

     ганизует доступ вторичного ведущего к ресурсам ведомой памяти.

     Вторичный ведущий,  если он есть, предоставляет дополнительные

     возможности доступа к ведомым ресурсам по магистрали iLBX.

                          4.7   MULTIBUS II

        Архитектура системы MULTIBUS II является процесорно-незави-

     симой. Она  отличается наличием 32-разрядной параллельной сис-

     темной магистралью  с  максимальной  скоростью   передачи   40

     Мбайт/с, недорогой  последовательной  системной  магистрали  и

     быстродействующей локальной магистрали для доступа к отдельным

     платам памяти. MULTIBUS II включает пять магистралей Intel: 1)

     локального расширения (iLBX II),  2) многоканального доступа к

     памяти, 3) параллельную системную (iPSB),  4) последовательную

     системную (iSSB) и  5)  параллельную  расширения  ввода-вывода

     (iSBX).

        Структура с несколькими магистралями имеет преимущества пе-

     ред одномагистральной системой.  В частности каждая магистраль

                                - 30 -

     оптимизирована  для выполнения определенных функций,  а опера-

     ции на них выполняются параллельно. Кроме того, магистрали, не

     используемые в конкретной системе,  могут быть исключены из ее

     архитектуры, что  избавляет  от неоправданных затрат.  Три ма-

     гистрали из перечисленных кратко описаны ниже.

            4.7.1 Параллельная системная магистраль iPSB.

        Параллельная системная  магистраль  iPSB  используется  для

     межпроцессорных пересылок данных  и  взаимосвязи  процессоров.

     Магистраль поддерживает  пакетную передачу с максимальной пос-

     тоянной скоростью 40 Мбайт/с.

        Связной магистрали  представляет собой плату,  объединяющую

     функциональную подсистему.  Каждый связной  магистрали  должен

     иметь средства передачи данных между МП 80386,  его регистрами

     межсоединений и магистралью iPSB. Магистраль iPSB представляет

     каждому связному  магистрали  четыре пространства адресов:  1)

     обычного ввода-вывода, 2) обычной памяти 3) пространство памя-

     ти объемом  до  255 адресов для передачи сообщений и 4) прост-

     ранство межсоединений.  Последнее обеспечивает графическую ад-

     ресацию, при которой идентификация связного магистрали (платы)

     осуществляется по номеру позиции,  на которой установлена пла-

     та. Поскольку МП 80386 имеет доступ только к пространствам па-

     мяти или ввода-вывода,  пространства сообщений и межсоединений

     следует отображать на первые два пространства.

        Операции на магистрали iPSB осуществляются посредством трех

     циклов магистрали.  Цикл  арбитража определяет следующего вла-

                                - 31 -

     дельца магистрали.  Этот цикл состоит из двух фаз: фазы приня-

     тия решения,  на которой определяется приоритет для управления

     магистралью, и фазы захвата, когда связной с наивысшим приори-

     тетом начинает цикл пересылки.

        Второй цикл магистрали iPSB - цикл пересылки, реализует пе-

     ресылку данных между владельцем и другим связным.  Третий цикл

     iPSB - цикл исключения,  указывает на возбуждение исключения в

     течении цикла пересылки.

             4.7.2  Магистраль локального расширения iLBX II

        Магистраль локального расширения iLBX II  является  быстро-

     действующей магистралью,  предназначенной для быстрого доступа

     к памяти,  расположенной на отдельных платах.  Одна магистраль

     iLBX II поддерживает либо две процессорные подсистемы плюс че-

     тыре подсистемы памяти, либо одну процессорную подсистему плюс

     пять подсистем  памяти.  При необходимости иметь большой объем

     памяти система MULTIBUS II может включать более одной  магист-

     рали iLBX  II.  В системе на базе МП 80386 с тактовой частотой

     16 МГц типичный цикл доступа iLBX требует 6 циклов ожидания.

        Для магистрали  iLBX  характерны 32-разрядная шина данных и

     26-разрядная шина адресов.  Поскольку эти шины разделены, воз-

     никает возможность  конвейерных операций в цикле пересылки.  К

     дополнительным особенностям магистрали iLBX относятся:  1) од-

     нонаправленное подтверждение при быстрой пересылке данных,  2)

     пространство межсоединений (для каждого связного  магистрали),

     через которое первичный запрашивающий связной инициализирует и

                                - 32 -

     настраивает всех остальных связных магистрали,  и 3)  средство

     взаимного исключения,  позволяющее управлять многопортовой па-

     мятью.

              4.7.3  Последовательная магистраль iSSB

        Относительно дешевая  последовательная системная магистраль

     iSSB может использоваться вместо  параллельной  системной  ма-

     гистрали iPSB в тех случаях, когда не требуется высокая произ-

     водительность последней. Магистраль iSSB может содержать до 32

     связных магистрали, распределенных на длине максимум 10 м. Уп-

     равление магистралью ведется с помощью стандартного  протокола

     множественного доступа  с  опросом несущей и разрешением конф-

     ликтов (CSMA/CD).  Связные магистрали используют этот протокол

     для передачи данных по мере своей готовности.  В случае однов-

     ременного инициирования передачи двумя или несколькими связны-

     ми вступает  в действие алгоритм разрешения конфликтов обеспе-

     чивающий справедливое предоставление доступа всем  запрашиваю-

     щим связным.

                                  5.1 Ведущие

        Ведущим является любой  модуль,  который  обладает  возмож-

     ностью захвата магистрали. Модуль захватывает магистраль с по-

     мощью логических схем обмена и инициирует передачу  данных  по

     магистрали,  используя  для  этого либо встроенные процессоры,

                                - 33 -

     либо специальные логические схемы.  Ведущие генерируют сигналы

     сигналы  управления,  адресные сигналы,  а также адреса памяти

     или устройств ввода-вывода.

        Ведущий может  работать  в одном из двух режимов:  режиме 1

     или режиме 2.  В режиме 1 ведущий ограничен одной передачей по

     магистрали через каждое подключение к шине. Если все ведущие в

     системе используют режим 1,  скорость работы системы ограничи-

     вается максимальной величиной цикла занятости магистрали.  Это

     позволяет разработчикам  прогнозировать  общую  производитель-

     ность конкретной системы.

        В режиме 2 у ведущих больше возможностей захвата  магистра-

     ли,  они могут инициировать обмен с наложением на текущую опе-

     рацию.  В этом режиме разрешены тайм-ауты магистрали, и опера-

     ции  ведущих  не ограничены максимальной величиной цикла заня-

     тости магистрали. Режим 2 обеспечивает широкий класс операций,

     что придает системе гибкость при удовлетворении запросов поль-

     зователей.

                              5.2 Ведомые

                                - 34 -

                        Устройства ввода-

                        вывода пользователя ╔═════════╤═════╤═══════╗

                            ‑       ‑       ║ Ведущий │ ЦП  │       ║

                            │       │       ║         └─────┘       ║                         - 12 -

 ╔══════════════════╗   ╔═══­═══════­═════╗ ╟────────┐   ‑   ┌──────╢

 ║ Ведомый          ║   ║ Ведомый         ║ ║ Обмен с│   │   │Ввод- ║

 ║                  ║   ╟────────┬────────╢ ║ магис- │   │   │вывод ║

 ║  Глобальный      ║   ║Парал-  │Последо-║ ║ тралью │   │   └──────╢

 ║  (системный)     ║   ║лельный │ватель- ║ ╟──┬─────┘   │   ┌──────╢

 ║  ввод-вывод      ║   ║ввод-вы-│ный ввод║ ║  │         │_─_│Память║

Страницы: 1, 2, 3, 4


на тему рефераты
НОВОСТИ на тему рефераты
на тему рефераты
ВХОД на тему рефераты
Логин:
Пароль:
регистрация
забыли пароль?

на тему рефераты    
на тему рефераты
ТЕГИ на тему рефераты

Рефераты бесплатно, реферат бесплатно, курсовые работы, реферат, доклады, рефераты, рефераты скачать, рефераты на тему, сочинения, курсовые, дипломы, научные работы и многое другое.


Copyright © 2012 г.
При использовании материалов - ссылка на сайт обязательна.