![]() |
|
|
Реферат: Преобразователь семисегментного кодаКарта Карно для функции
После выделения областей
получим следующую функцию Карта Карно для функции
После выделения областей
получим следующую функцию Карта Карно для функции
После выделения областей получим
следующую функцию После реализации всех функций можно проследить какие логические элементы участвуют в реализации блока преобразования двоичного кода в семисегментный. Для преобразования двоичного кода в семисегментный потребуются четыре элемента НЕ, трех и четырех-входовые элементы И, трех-, четырех-, пяти-входовые элементы ИЛИ-НЕ. Таблицы истинности и условно-графические обозначения этих элементов представлены на рис. 2.1.6, где Xi – входные сигналы, Y – выходной сигнал.
а) б)
г)
в) д)
е) Рис. 2.1.6. – Таблица истинности и УГО элемента: а) НЕ; б) 3И; в) 4И; г) 3ИЛИ-НЕ; д) 5ИЛИ-НЕ; е) 4ИЛИ-НЕ. 2.2. Блок индикации. Блок индикации предназначен для отображения состояние регистров цифрового устройства. Данный блок состоит из семисегментного индикатора с общими катодами (рис. 2.1.7), т.к. он управляется высоким уровнем сигнала. Рис. 2.1.7. 3. Принципиальная схема Принципиальную схему разрабатываем на основе функциональной, подбирая для каждого элемента из специальных справочников типономиналы, соответствующие ГОСТу. 3.1. КР1533ЛН1
Рис. 3.1.1. Данная ИМС содержит шесть элементов НЕ, каждый из которых работает в соответствии с таблицей 3.1.1. Таблицы 3.1.1. Таблица истинности элемента НЕ
где Х – входной сигнал, Y – выходной сигнал. 3.2. КР1533ЛИ6
Рис. 3.2.1. Данная ИМС содержит два четырехвходовых элемента И, каждый из которых работает в соответствии с таблицей 3.2.1. Таблица 3.2.1. Таблица истинности элемента 4И.
где Xi – входные сигналы, Y – выходной сигнал. 3.3. КР1533ЛИ3 Микросхема типа ЛИ реализует функцию И. УГО микросхемы представлено на рис. 3.3.1. Рис. 3.3.1. Данная ИМС содержит три трехвходовых элемента И, каждый из которых работает в соответствии с таблицей 3.3.1. Таблица 3.3.1. Таблица истинности элемента 3И.
где Xi – входные сигналы, Y – выходной сигнал. 3.4. КР1533ЛЕ4 Микросхема типа ЛЕ реализует функцию ИЛИ-НЕ. УГО микросхемы представлено на рис. 3.4.1. Рис. 3.4.1. Данная ИМС содержит три трехвходовых элемента ИЛИ-НЕ, каждый из которых работает в соответствии с таблицей 3.4.1. Таблица 3.4.1. Таблица истинности элемента 3ИЛИ-НЕ.
где Xi – входные сигналы, Y – выходной сигнал. 3.5. КР531ЛЕ7 Микросхема типа ЛЕ реализует функцию ИЛИ-НЕ. УГО микросхемы представлено на рис. 3.5.1. Рис. 3.5.1. Данная ИМС содержит два пятивходовых элемента ИЛИ-НЕ, каждый из которых работает в соответствии с таблицей 3.5.1. Таблица 3.5.1. Таблица истинности элемента 5ИЛИ-НЕ.
где Xi – входные сигналы, Y – выходной сигнал. 3.6. К155ЛЕ3
Рис. 3.6.1. Данная ИМС содержит два пятивходовых элемента ИЛИ-НЕ, в каждом из которых один вход – стробирующий (Е1), и работает в соответствии с таблицей 3.6.1. Таблица 3.6.1. Таблица истинности элемента 4ИЛИ-НЕ.
где Xi – входные сигналы, Е1 – вход стробирования, Y – выходной сигнал. 3.7. АЛС320Б Одноразрядный семисегментный цифробуквенный индикатор. Изготавливается на основе структур галлий – фосфор. Данный индикатор имеет зеленый корпус и не имеет цветных точек. УГО данного индикатора представлено на рис. 3.7.1. Рис. 3.7.1. где a, b, c, d, e, f, g – светодиоды индикатора. Составленная принципиальная схема представлена в приложении 2. 4. Расчет быстродействия и потребляемой мощности. Спроектированная принципиальная схема объекта сопровождается поверочными расчетами технических характеристик: быстродействия, потребляемой мощности, погрешности и т.д. В данном курсовом проекте необходимо рассчитать быстродействие и потребляемую мощность. 4.1. Расчет потребляемой мощности. В первом приближении Рсумм рассчитывается как сумма максимальных мощностей, потребляемых микросхемами.
Рпот – потребляемая мощность; Рмахi – максимальная потребляемая мощность ИМС i-го типономинала; ni– количество ИМС i-го номинала; M – число различных типономиналов ИМС, входящих в схему. При расчете Рмахi необходимо пользоваться формулой:
Uпит – напряжение источника питания микросхем (для ИМС серии ТТЛ Uпит=5В). Iпотi – максимально потребляемый ток ИМС i-го типа. Максимальная потребляемая мощность для каждой ИМС приведена в таблице 4.1.1. Таблица 4.1.1. Таблица мощностей ИМС.
4.2. Расчет быстродействия. Быстродействие относится к динамическим характеристикам ИМС и характеризуется временем задержки распространения сигнала. Временная задержка - период времени с момента поступления сигнала на вход ИМС до времени его появления на выходе. В схемах, содержащих несколько последовательно включенных ИМС, время задержки распространения сигнала определятся суммой задержки распространения по всем микросхемам (см. формула 4.2.1).
где
где
Для ИМС со многими функционально неравнозначными входами и несколькими выходами время задержки распространения по различным входам неодинаковы. При разработки схем необходимо использовать цепи, создающие минимальные задержки. Для оценки быстродействия следует выбрать цепь
наибольшей длины и рассчитать её суммарную задержку Типы ИМС и их время задержки, составляющие самую длинную цепь в данном проекте, представлены в таблице 4.2.1. Таблица 4.2.1 Типы ИМС и время задержки.
С помощью формулы 4.2.1 определяется общее время задержки:
Заключение. В данном курсовом проекте был разработан преобразователь двоичного кода в семисегментный. В ходе проектирования были получены такие навыки как: 1. Выбор и обоснование принципов построения объекта (структурная схема); 2. Разработка функциональных элементов и анализ их функционирования в соответствии с заданными условиями (функциональная схема); 3. Выбор способа реализации функциональных элементов на реально существующих ИМС (принципиальная схема); 4. Расчет технических показателей объекта. Спроектированное устройство преобразователя двоичного кода в семисегментный соответствует заданным условиям функционирования. Устройство состоит из простейших логических элементов, количество которых не высоко, потребляет мало мощности и имеет незначительное время задержки. Но данное устройство не является удобным, т.к. существуют микросхемы, которые могут производить аналогичные преобразования кодов и по своим характеристикам превосходят данное разработанное устройство.Список литературы. 1. Калабеков Б.А., Цифровые устройства и микропроцессорные системы: Учебник для техникумов связи. – М.: Горячая линия – Телеком, 2000. – 332 с. 2. Методические указания к выполнению курсового проекта по дисциплине “Цифровая схемотехника” для студентов специальности 210100 “Управление и информатика в технических системах”. Составители: доцент, к.т.н. А.В. Запевалов, Ст. преподаватель Л.Ю. Запевалова. Сургут СурГУ 2000-34 с. 3. Табарина Б.В. Интегральные микросхемы: справочник. – М.: Радио и связь, 1983. – 528 с. 4. Лекции по цифровой схемотехнике.
|
Страницы: 1, 2
![]() |
||
НОВОСТИ | ![]() |
![]() |
||
ВХОД | ![]() |
|
Рефераты бесплатно, реферат бесплатно, курсовые работы, реферат, доклады, рефераты, рефераты скачать, рефераты на тему, сочинения, курсовые, дипломы, научные работы и многое другое. |
||
При использовании материалов - ссылка на сайт обязательна. |