на тему рефераты
 
Главная | Карта сайта
на тему рефераты
РАЗДЕЛЫ

на тему рефераты
ПАРТНЕРЫ

на тему рефераты
АЛФАВИТ
... А Б В Г Д Е Ж З И К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я

на тему рефераты
ПОИСК
Введите фамилию автора:


Реферат: Такролимус


Incidence of Post Transplant Diabetes Mellitus
and Insulin Use at 2 years in Kidney Transplant Recipients in the Phase III Study

Status of PTDM*

Prograf

CBIR

Patients without pretransplant history of diabetes mellitus.

151

151

New onset PTDM*, 1st Year

30/151 (20%)

6/151 (4%)

Still insulin dependent at one year in those without prior
history of diabetes.

25/151(17%)

5/151 (3%)

New onset PTDM* post 1 year

1

0

Patients with PTDM* at 2 years

16/151 (11%)

5/151 (3%)

*use of insulin for 30 or more consecutive days, with < 5 day gap, without a prior history of insulin dependent diabetes mellitus or non insulin dependent diabetes mellitus.

Development of Post Transplant Diabetes Mellitus by Race
and by Treatment Group during First Year Post Kidney Transplantation in the Phase III Study


Patient Race

Prograf

CBIR

No. of Patients
at Risk

Patients Who
Developed PTDM*

No. of Patients
at Risk

Patients Who
Developed PTDM*

Black

41

15 (37%)

36

3 (8%)

Hispanic

17

5 (29%)

18

1 (6%)

Caucasian

82

10 (12%)

87

1 (1%)

Other

11

0 (0%)

10

1 (10%)

Total

151

30 (20%)

151

6 (4%)

* use of insulin for 30 or more consecutive days, with < 5 day gap, without a prior history of insulin dependent diabetes mellitus or non insulin dependent diabetes mellitus.

Insulin-dependent post-transplant diabetes mellitus was reported in 18% and 11% of Prograf-treated liver transplant patients and was reversible in 45% and 31% of these patients at one year post transplant, in the U.S. and European randomized studies, respectively (See Table below). Hyperglycemia was associated with the use of Prograf in 47% and 33% of liver transplant recipients in the U.S. and European randomized studies, respectively, and may require treatment (see ADVERSE REACTIONS).

Incidence of Post Transplant Diabetes Mellitus and Insulin Use
at One Year in Liver Transplant Recipients

Status of PTDM*

US Study

European Study

Prograf

CBIR

Prograf

CBIR

Patients at risk **

239

236

239

249

New Onset PTDM*

42 (18%)

30 (13%)

26 (11%)

12(5%)

Patients still on insulin at 1 year

23 (10%)

19 (8%)

18 (8%)

6 (2%)

* use of insulin for 30 or more consecutive days, with < 5 day gap, without a prior history of insulin dependent diabetes mellitus or non insulin dependent diabetes mellitus.
**Patients without pretransplant history of diabetes mellitus.

Prograf can cause neurotoxicity and nephrotoxicity, particularly when used in high doses. Nephrotoxicity was reported in approximately 52% of kidney transplantation patients and in 40% and 36% of liver transplantation patients receiving Prograf in the U.S. and European randomized trials, respectively (see ADVERSE REACTIONS). More overt nephrotoxicity is seen early after transplantation, characterized by increasing serum creatinine and a decrease in urine output. Patients with impaired renal function should be monitored closely as the dosage of Prograf may need to be reduced. In patients with persistent elevations of serum creatinine who are unresponsive to dosage adjustments, consideration should be given to changing to another immunosuppressive therapy. Care should be taken in using tacrolimus with other nephrotoxic drugs. In particular, to avoid excess nephrotoxicity, Prograf should not be used simultaneously with cyclosporine. Prograf or cyclosporine should be discontinued at least 24 hours prior to initiating the other. In the presence of elevated Prograf or cyclosporine concentrations, dosing with the other drug usually should be further delayed.

Mild to severe hyperkalemia was reported in 31% of kidney transplant recipients and in 45% and 13% of liver transplant recipients treated with Prograf in the U.S. and European randomized trials, respectively, and may require treatment (see ADVERSE REACTIONS). Serum potassium levels should be monitored and potassium-sparing diuretics should not be used during Prograf therapy (see PRECAUTIONS).

Neurotoxicity, including tremor, headache, and other changes in motor function, mental status, and sensory function were reported in approximately 55% of liver transplant recipients in the two randomized studies. Tremor occurred more often in Prograf-treated kidney transplant patients (54%) compared to cyclosporine-treated patients. The incidence of other neurological events in kidney transplant patients was similar in the two treatment groups (see ADVERSE REACTIONS). Tremor and headache have been associated with high whole-blood concentrations of tacrolimus and may respond to dosage adjustment. Seizures have occurred in adult and pediatric patients receiving Prograf (see ADVERSE REACTIONS). Coma and delirium also have been associated with high plasma concentrations of tacrolimus.

As in patients receiving other immunosuppressants, patients receiving Prograf are at increased risk of developing lymphomas and other malignancies, particularly of the skin. The risk appears to be related to the intensity and duration of immunosuppression rather than to the use of any specific agent. A lymphoproliferative disorder (LPD) related to Epstein-Barr Virus (EBV) infection has been reported in immunosuppressed organ transplant recipients. The risk of LPD appears greatest in young children who are at risk for primary EBV infection while immunosuppressed or who are switched to Prograf following long-term immunosuppression therapy. Because of the danger of oversuppression of the immune system which can increase susceptibility to infection, combination immunosuppressant therapy should be used with caution.

A few patients receiving Prograf injection have experienced anaphylactic reactions. Although the exact cause of these reactions is not known, other drugs with castor oil derivatives in the formulation have been associated with anaphylaxis in a small percentage of patients. Because of this potential risk of anaphylaxis, Prograf injection should be reserved for patients who are unable to take Prograf capsules.

Patients receiving Prograf injection should be under continuous observation for at least the first 30 minutes following the start of the infusion and at frequent intervals thereafter. If signs or symptoms of anaphylaxis occur, the infusion should be stopped. An aqueous solution of epinephrine should be available at the bedside as well as a source of oxygen.

PRECAUTIONS:

General

Hypertension is a common adverse effect of Prograf therapy (see ADVERSE REACTIONS). Mild or moderate hypertension is more frequently reported than severe hypertension. Antihypertensive therapy may be required; the control of blood pressure can be accomplished with any of the common antihypertensive agents. Since tacrolimus may cause hyperkalemia, potassium-sparing diuretics should be avoided. While calcium-channel blocking agents can be effective in treating Prograf-associated hypertension, care should be taken since interference with tacrolimus metabolism may require a dosage reduction (see Drug Interactions).

Renally and Hepatically Impaired Patients

For patients with renal insufficiency some evidence suggests that lower doses should be used (see CLINICAL PHARMACOLOGY and DOSAGE AND ADMINISTRATION).

The use of Prograf in liver transplant recipients experiencing post-transplant hepatic impairment may be associated with increased risk of developing renal insufficiency related to high whole-blood levels of tacrolimus. These patients should be monitored closely and dosage adjustments should be considered. Some evidence suggests that lower doses should be used in these patients (see DOSAGE AND ADMINISTRATION).

Myocardial Hypertrophy

Myocardial hypertrophy has been reported in association with the administration of Prograf, and is generally manifested by echocardiographically demonstrated concentric increases in left ventricular posterior wall and interventricular septum thickness. Hypertrophy has been observed in infants, children and adults. This condition appears reversible in most cases following dose reduction or discontinuance of therapy. In a group of 20 patients with pre- and post-treatment echocardiograms who showed evidence of myocardial hypertrophy, mean tacrolimus whole blood concentrations during the period prior to diagnosis of myocardial hypertrophy ranged from 11 to 53 ng/mL in infants (N=10, age 0.4 to 2 years), 4 to 46 ng/mL in children (N=7, age 2 to 15 years) and 11 to 24 ng/mL in adults (N=3, age 37 to 53 years).

In patients who develop renal failure or clinical manifestations of ventricular dysfunction while receiving Prograf therapy, echocardiographic evaluation should be considered. If myocardial hypertrophy is diagnosed, dosage reduction or discontinuation of Prograf should be considered.

Information for Patients

Patients should be informed of the need for repeated appropriate laboratory tests while they are receiving Prograf. They should be given complete dosage instructions, advised of the potential risks during pregnancy, and informed of the increased risk of neoplasia. Patients should be informed that changes in dosage should not be undertaken without first consulting their physician.

Patients should be informed that Prograf can cause diabetes mellitus and should be advised of the need to see their physician if they develop frequent urination, increased thirst or hunger.

Laboratory Tests

Serum creatinine, potassium, and fasting glucose should be assessed regularly. Routine monitoring of metabolic and hematologic systems should be performed as clinically warranted.

Drug Interactions

Due to the potential for additive or synergistic impairment of renal function, care should be taken when administering Prograf with drugs that may be associated with renal dysfunction. These include, but are not limited to, aminoglycosides, amphotericin B, and cisplatin. Initial clinical experience with the co-administration of Prograf and cyclosporine resulted in additive/synergistic nephrotoxicity. Patients switched from cyclosporine to Prograf should receive the first Prograf dose no sooner than 24 hours after the last cyclosporine dose. Dosing may be further delayed in the presence of elevated cyclosporine levels.

Drugs That May Alter Tacrolimus Concentrations

Since tacrolimus is metabolized mainly by the CYP3A enzyme systems, substances known to inhibit these enzymes may decrease the metabolism or increase bioavailability of tacrolimus as indicated by increased whole blood or plasma concentrations. Drugs known to induce these enzyme systems may result in an increased metabolism of tacrolimus or decreased bioavailability as indicated by decreased whole blood or plasma concentrations. Monitoring of blood concentrations and appropriate dosage adjustments are essential when such drugs are used concomitantly.

*Drugs That May Increase Tacrolimus Blood Concentrations:

Calcium
Channel

Blockers

Antifungal
Agents

Macrolide
Antibiotics

diltiazem clotrimazole clarithromycin
nicardipine fluconazole erythromycin
nifedipine itraconazole troleandomycin
verapamil ketoconazole



Gastrointestinal
Prokinetic
Agents

Other
Drugs

cisapride bromocriptine
metoclopramide cimetidine
cyclosporine
danazol
ethinyl estradiol
methylprednisolone
omeprazole
protease inhibitors
nefazodone



In a study of 6 normal volunteers, a significant increase in tacrolimus oral bioavailability (14±5% vs. 30±8%) was observed with concomitant ketoconazole administration (200 mg). The apparent oral clearance of tacrolimus during ketoconazole administration was significantly decreased compared to tacrolimus alone (0.430±0.129L/hr/kg vs. 0.148±0.043L/hr/kg). Overall, IV clearance of tacrolimus was not significantly changed by ketoconazole co-administration, although it was highly variable between patients.

*Drugs That May Decrease Tacrolimus Blood Concentrations:

Anticonvulsants

Antibiotics

Herbal Preparations

carbamazepine rifabutin St. John's Wort
phenobarbital rifampin
phenytoin

*This table is not all inclusive.

St. John's Wort (Hypericum perforatum) induces CYP3A4 and P-glycoprotein. Since tacrolimus is a substrate for CYP3A4, there is the potential that the use of St. John's Wort in patients receiving Prograf could result in reduced tacrolimus levels.

In a study of 6 normal volunteers, a significant decrease in tacrolimus oral bioavailability (14±6% vs. 7±3%) was observed with concomitant rifampin administration (600 mg). In addition, there was a significant increase in tacrolimus clearance (0.036±0.008L/hr/kg vs. 0.053±0.010L/hr/kg) with concomitant rifampin administration.

Interaction studies with drugs used in HIV therapy have not been conducted. However, care should be exercised when drugs that are nephrotoxic (e.g., ganciclovir) or that are metabolized by CYP3A (e.g., ritonavir) are administered concomitantly with tacrolimus. Tacrolimus may effect the pharmacokinetics of other drugs (e.g. phenytoin) and increase their concentration. Grapefruit juice affects CYP3A-mediated metabolism and should be avoided (see DOSAGE AND ADMINISTRATION).

Other Drug Interactions

Immunosuppressants may affect vaccination. Therefore, during treatment with Prograf, vaccination may be less effective. The use of live vaccines should be avoided; live vaccines may include, but are not limited to measles, mumps, rubella, oral polio, BCG, yellow fever, and TY 21a typhoid.1

Carcinogenesis, Mutagenesis and Impairment of Fertility

An increased incidence of malignancy is a recognized complication of immunosuppression in recipients of organ transplants. The most common forms of neoplasms are non-Hodgkin's lymphomas and carcinomas of the skin. As with other immunosuppressive therapies, the risk of malignancies in Prograf recipients may be higher than in the normal, healthy population. Lymphoproliferative disorders associated with Epstein-Barr Virus infection have been seen. It has been reported that reduction or discontinuation of immunosuppression may cause the lesions to regress.

No evidence of genotoxicity was seen in bacterial (Salmonella and E. coli) or mammalian (Chinese hamster lung-derived cells) in vitro assays of mutagenicity, the in vitro CHO/HGPRT assay of mutagenicity, or in vivo clastogenicity assays performed in mice; tacrolimus did not cause unscheduled DNA synthesis in rodent hepatocytes.

Carcinogenicity studies were carried out in male and female rats and mice. In the 80-week mouse study and in the 104-week rat study no relationship of tumor incidence to tacrolimus dosage was found. The highest doses used in the mouse and rat studies were 0.8 - 2.5 times (mice) and 3.5 - 7.1 times (rats) the recommended clinical dose range of 0.1 - 0.2 mg/kg/day when corrected for body surface area.

No impairment of fertility was demonstrated in studies of male and female rats. Tacrolimus, given orally at 1.0 mg/kg (0.7 - 1.4X the recommended clinical dose range of 0.1 - 0.2 mg/kg/day based on body surface area corrections) to male and female rats, prior to and during mating, as well as to dams during gestation and lactation, was associated with embryolethality and with adverse effects on female reproduction. Effects on female reproductive function (parturition) and embryolethal effects were indicated by a higher rate of pre-implantation loss and increased numbers of undelivered and nonviable pups. When given at 3.2 mg/kg (2.3 - 4.6X the recommended clinical dose range based on body surface area correction), tacrolimus was associated with maternal and paternal toxicity as well as reproductive toxicity including marked adverse effects on estrus cycles, parturition, pup viability, and pup malformations.

Pregnancy: Category C

In reproduction studies in rats and rabbits, adverse effects on the fetus were observed mainly at dose levels that were toxic to dams. Tacrolimus at oral doses of 0.32 and 1.0 mg/kg during organogenesis in rabbits was associated with maternal toxicity as well as an increase in incidence of abortions; these doses are equivalent to 0.5 - 1X and 1.6 - 3.3X the recommended clinical dose range (0.1 - 0.2 mg/kg) based on body surface area corrections. At the higher dose only, an increased incidence of malformations and developmental variations was also seen. Tacrolimus, at oral doses of 3.2 mg/kg during organogenesis in rats, was associated with maternal toxicity and caused an increase in late resorptions, decreased numbers of live births, and decreased pup weight and viability. Tacrolimus, given orally at 1.0 and 3.2 mg/kg (equivalent to 0.7 - 1.4X and 2.3 - 4.6X the recommended clinical dose range based on body surface area corrections) to pregnant rats after organogenesis and during lactation, was associated with reduced pup weights.

Страницы: 1, 2, 3, 4


на тему рефераты
НОВОСТИ на тему рефераты
на тему рефераты
ВХОД на тему рефераты
Логин:
Пароль:
регистрация
забыли пароль?

на тему рефераты    
на тему рефераты
ТЕГИ на тему рефераты

Рефераты бесплатно, реферат бесплатно, курсовые работы, реферат, доклады, рефераты, рефераты скачать, рефераты на тему, сочинения, курсовые, дипломы, научные работы и многое другое.


Copyright © 2012 г.
При использовании материалов - ссылка на сайт обязательна.