на тему рефераты
 
Главная | Карта сайта
на тему рефераты
РАЗДЕЛЫ

на тему рефераты
ПАРТНЕРЫ

на тему рефераты
АЛФАВИТ
... А Б В Г Д Е Ж З И К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я

на тему рефераты
ПОИСК
Введите фамилию автора:


Реферат: Метод экспертных оценок


Используя (5.25), запишем оценку дисперсии (5.15) в виде [12]

                                                                                                                        (5.26)

Подставляя (5.24), (5.25), (5.26) в (5.17) и сокращая на множитель (n—1), запишем окончательное выражение для коэффициента конкордации [12]

                                                                                                                (5.27)

Данная формула определяет коэффициент конкордации для случая отсутствия связанных рангов.

Если в ранжировках имеются связанные ранги, то максимальное значение дисперсии в знаменателе форму­лы (5.17) становится меньше, чем при отсутствии свя­занных рангов. Можно показать, что при наличии свя­занных рангов коэффициент конкордации вычисляется по формуле [12]:

                                                                                                 (5.28)

где

                                                                                                                 (5.29)

В формуле (5.28)  - показатель связанных рангов в j-й ранжировке,  - число групп равных рангов в j-й ран­жировке,  - число равных рангов в k-й группе связан­ных рангов при ранжировке j-м экспертом. Если совпа­дающих рангов нет, то =0, =0 и, следовательно, =0. В этом случае формула (5.28) совпадает с форму­лой (5.27).

Коэффициент конкордации равен 1, если все ранжи­ровки экспертов одинаковы. Коэффициент конкордации равен нулю, если все ранжировки различны, т. е. со­вершенно нет совпадения.

Коэффициент конкордации, вычисляемый по формуле (5.27) или (5.28), является оценкой истинного значения коэффициента и, следовательно, представляет собой случайную величину. Для определения значимости оценки коэффициента конкордации необходимо знать распреде­ление частот для различных значений числа экспертов m и количества объектов n. Распределение частот для W при  и вычислено в [52]. Для боль­ших значений m и n можно использовать известные ста­тистики. При числе объектов n>7 оценка значимости коэффициента конкордации может быть произведена по критерию . Величина Wm(n1) имеет  распределе­ние с v=n –1 степенями свободы.

При наличии связанных рангов  распределение с v=n—1 степенями свободы имеет величина [12]:

                                                                                              (5.30)

Энтропийный коэффициент конкордации определяет­ся формулой (коэффициент согласия) [12]:

                                                                                                                    (5.31)

где Н – энтропия, вычисляемая по формуле

                                                                                                        (5.32)

а - максимальное значение энтропии. В формуле для энтропии  - оценки вероятностей j-го ранга, при­сваиваемого i-му объекту. Эти оценки вероятностей вы­числяются в виде отношения количества экспертов , приписавших объекту  ранг j к общему числу экспер­тов [12].

                                                                                                                           (5.33)

Максимальное значение энтропии достигается при равновероятном распределении рангов, т. е. когда . Тогда [12]

                                                                                                                     (5.34)

Подставляя это соотношение в формулу (5.32), получаем [12]

                                                                                              (5.35)

Коэффициент согласия изменяется от нуля до едини­цы. При  расположение объектов по рангам рав­новероятно, поскольку в этом случае . Данный случай может быть обусловлен либо невозможностью ранжировки объектов по сформулированной совокупно­сти показателей, либо полной несогласованностью мне­ний экспертов. При , что достигается при нулевой энтропии (H=0), все эксперты дают одинаковую ранжи­ровку. Действительно, в этом случае для каждого фик­сированного объекта  все эксперты присваивают ему один и тот же ранг j, следовательно, , a   Поэтому и H=0.

Сравнительная оценка дисперсионного и энтропийно­го коэффициентов конкордации показывает, что эти ко­эффициенты дают примерно одинаковую оценку согла­сованности экспертов при близких ранжировках. Одна­ко если, например, вся группа экспертов разделилась в мнениях на две подгруппы, причем ранжировки в этих подгруппах противоположные (прямая и обратная), то дисперсионный коэффициент конкордации будет равен нулю, а энтропийный коэффициент конкордации будет равен 0,7. Таким образом, энтропийный коэффициент конкордации позволяет зафиксировать факт разделения мнений на две противоположные группы. Объем вычис­лений для энтропийного коэффициента конкордации не­сколько больше, чем для дисперсионного коэффициента конкордации.

3.4. Обработка парных сравнений объектов

При решении задачи оценки большого числа объектов (ранжирование, определение относительных весов, бал­льная оценка) возникают трудности психологического характера, обусловленные восприятием экспертами мно­жества свойств объектов. Эксперты сравнительно легко решают задачу парного сравнения объектов. Возникает вопрос, каким образом получить оценку всей совокуп­ности объектов на основе результатов парного сравнения, не накладывая условия транзитивности? Рассмотрим алгоритм решения этой задачи. Пусть m экспертов про­изводят оценку всех пар объектов, давая числовую оценку [12]

                                                                                                        (5.36)

Если при оценке пары   экспертов высказались в пользу предпочтения   экспертов высказались наоборот  и  экспертов считают эти объекты равноценными, то оценка математического ожидания случайной величины  равна [12]

                                                                                       (5.37)

Общее количество экспертов равно сумме

                                                                                                              (5.38)

Определяя отсюда  и подставляя его в (5.37), полу­чаем [12]

                                                                                       (5.39)

Очевидно, что  Совокупность величин  образует матрицу  на основе которой можно по­строить ранжировку всех объектов и определить коэф­фициенты относительной важности объектов.

Введем вектор коэффициентов относительной важно­сти объектов порядка t следующей формулой [12]:

                                                                                                    (5.40)

где  - матрица   математических ожиданий оценок пар объектов,  - вектор коэф­фициентов относительной важности объектов порядка t. Величина  равна [12]

                                                                                                               (5.41)

Коэффициенты относительной важности первого по­рядка есть относительные суммы элементов строк мат­рицы X. Действительно, полагая t=1, из (5.40) получаем [12]

                                                                                                    (5.42)

Коэффициенты относительной важности второго по­рядка (t=2} есть относительные суммы элементов строк матрицы X2 [12].

                                                                                          (5.43)

Если матрица Х неотрицательна и неразложима, то при увеличении порядка  величина  сходится к максимальному собственному числу матрицы Х [12]

                                                                                                                        (5.44)

а вектор коэффициентов относительной важности объек­тов стремится к собственному вектору матрицы X, соот­ветствующему максимальному собственному числу

                                                                                                           (5.45)

Определение собственных чисел и собственных век­торов матрицы производится решением алгебраического уравнения [12]

                                                                                                                       (5.46)

где Е—единичная матрица, и системы линейных урав­нений [12]

                                                                                                            (5.47)

где k – собственный вектор матрицы X, соответствующий максимальному собственному числу . Компоненты соб­ственного вектора есть коэффициенты относительной важности объектов, измеренные в шкале отношений.

С практической точки зрения вычисление коэффици­ентов относительной важности объектов проще произво­дить последовательной процедурой по формуле (5.40) при t=1, 2, … Как показывает опыт, 3-4 последователь­ных вычислений достаточно, чтобы получить значения   и k, близкие к предельным значениям, определяемым уравнениями (5.46), (5.47).

Матрица  неотрицательная, поскольку все ее элементы (5.39) неотрицательны. Матрица называется неразложимой, если перестановкой рядов (строк и одно­именных столбцов) ее нельзя привести к треугольному виду [12]

                                                                                                  (5.48)

где  - неразложимые подматрицы матрицы X. Пред­ставление матрицы Х в виде (5.48) означает разбиение объектов на l доминирующих множеств [12]

                                                                                                        (5.49)

При 1=n матрица Х неразложима, т. е. существует толь­ко одно доминирующее множество, совпадающее с ис­ходным множеством объектов. Разложимость матрицы Х означает, что среди экспертов имеются большие раз­ногласия в оценке объектов.

Если матрица Х неразложима, то вычисление коэф­фициентов относительной важности  по­зволяет определить, во сколько раз один объект превос­ходит другой объект по сравниваемым показателям. Вычисление коэффициентов относительной важности объектов позволяет одновременно построить ранжиров­ку объектов. Объекты ранжируются так, что первым объ­ектом считается объект, у которого коэффициент относи­тельной важности наибольший. Полная ранжировка определяется цепочкой неравенств [12]

из которой следует

Если матрица Х является разложимой, то определить коэффициенты относительной важности можно только для каждого множества . Для каждой матрицы  определяется максимальное собственное число и соответ­ствующий этому числу собственный вектор. Компоненты собственного вектора и есть коэффициенты относитель­ной важности объектов, входящих в множество . По этим коэффициентам осуществляется ранжировка объ­ектов данного множества. Общая ранжировка объектов дается соотношением [12]

Таким образом, если матрица Х неразложима, то по результатам парного сравнения объектов возможно как измерение предпочтительности объектов в шкале отно­шений, так и в шкале порядка (ранжирование). Если же матрица Х разложима, то возможно только ранжиро­вание объектов.

Следует отметить, что отношение предпочтения  может быть выражено любым положительным числом С. При этом должно выполняться условие  В частности, можно выбрать С=2 так, что если , то  если  то  и если , то .

3.5. Определение взаимосвязи ранжировок

При обработке результатов ранжирования могут возник­нуть задачи определения зависимости между ранжиров­ками двух экспертов, связи между достижением двух различных целей при решении одной и той же совокуп­ности проблем или взаимосвязи между двумя призна­ками.

В этих случаях мерой взаимосвязи может служить коэффициент ранговой корреляции. Характеристикой взаимосвязи множества ранжировок или целей будет яв­ляться матрица коэффициентов ранговой корреляции. Известны коэффициенты ранговой корреляции Спирмена и Кендалла.

Коэффициент ранговой корреляции Спирмена опре­деляется формулой [12]:

                                                                                                                      (5.50)

где  - взаимный корреляционный момент первой и второй ранжировок,   - дисперсии этих ранжиро­вок. По данным двум ранжировкам оценки взаимного корреляционного момента и дисперсии вычисляются по формулам [12]:

                                                                                       (5.51)

                                                           (5.52)

где n – число ранжируемых объектов,   - ранги в первой и второй ранжировках соответственно,   - средние ранги в первой и второй ранжировках. Оценки средних рангов определяются формулами [12]:

                                                                                    (5.53)

Вычислим оценки средних рангов и дисперсий в пред­положении, что в ранжировках отсутствуют связанные ранги, т. е. обе ранжировки дают строгое упорядочение объектов. В этом случае средние ранги (5.53) представ­ляют собой суммы натуральных чисел от единицы до n, поделенные на n. Следовательно, средние ранги для обе­их ранжировок одинаковы и равны [12]

                                                                                            (5.54)

При вычислении оценок дисперсий заметим, что если раскрыть круглые скобки в формулах (5.52), то под зна­ком сумм будут находиться натуральные числа и их квадраты. Две ранжировки могут отличаться друг от друга только перестановкой рангов, но сумма натураль­ных чисел и их квадратов не зависит от порядка (пере­становки) слагаемых. Следовательно, дисперсии (5.52) для двух любых ранжировок (при отсутствии связанных рангов) будут одинаковы и равны [12]

 

 (i=1,2).                                                 (5.55)

Подставляя значение  из (5.51) и   из (5.55) в формулу (5.50), получим оценку коэффициента ранго­вой корреляции Спирмена [12]

                                                                                          (5.56)

Для проведения практических расчетов удобнее поль­зоваться другой формулой для коэффициента корреля­ции Спирмена. Ее можно получить из (5.56), если вос­пользоваться тождеством [12]

                                  (5.57)

В равенстве (5.57) первые две суммы в правой части, как это следует из выражения (5.55), одинаковы и рав­ны [12]

                                                       (5.58)

Подставляя в формулу (5.56) значение суммы из (5.57) и используя равенство (5.58), получаем следу­ющую удобную для расчетов формулу коэффициента ранговой корреляции Спирмена [12]:

                                                                                               (5.59)

Коэффициент корреляции Спирмена изменяется от –1 до +1. Равенство единице достигается, как это сле­дует из формулы (5.59), при одинаковых ранжировках, т. е. когда  Значение  имеет место при про­тивоположных ранжировках (прямая и обратная ран­жировки). При равенстве коэффициента корреляции ну­лю ранжировки считаются линейно независимыми.

Оценка коэффициента корреляции, вычисляемая по формуле (5.59), является случайной величиной. Для определения значимости этой оценки необходимо задать­ся величиной вероятности , принять решение о значи­мости коэффициента корреляции и определить значение порога  по приближенной формуле [12]

                                                                                                         (5.60)

где n – количество объектов,  - функция, обратная функции [12]

для которой имеются таблицы [7]. После вычисления порогового значения оценка коэффициента корреляции считается значимой, если .

Для определения значимости оценки коэффициента Спирмена можно воспользоваться критерием Стьюдента, поскольку величина [12]

                                                                                                                     (5.61)

приближенно распределена по закону Стьюдента с n – 2 степенями свободы.

Если в ранжировках имеются связанные ранги, то коэффициент Спирмена вычисляется по следующей фор­муле [12]:

                                                                                                         (5.62)

где  - оценка коэффициента ранговой корреляции Спирмена, вычисляемая по формуле (5.59), а величины   равны [12]

                                                             (5.63)

В этих формулах  и  - количество различных связан­ных рангов в первой и второй ранжировках соответст­венно.

Коэффициент ранговой корреляции Кендалла при от­сутствии связанных рангов определяется формулой [12]:

где n – количество объектов,  - ранги объектов, sign x – функция, равная [12]

     sign   

Сравнительная оценка коэффициентов ранговой кор­реляции Спирмена и Кендалла показывает, что вычис­ление коэффициентов Спирмена производится по более простой формуле. Кроме того, коэффициент Спирмена дает более точный результат, поскольку он является оп­тимальной по критерию минимума средней квадрата ошибки оценкой коэффициента корреляции.

Отсюда следует, что при практических расчетах кор­реляционной зависимости ранжировок предпочтитель­нее использовать коэффициент ранговой корреляции Спирмена.


ЗАКЛЮЧЕНИЕ

  Динамизм и новизна современных народнохозяйственных задач, возможность возникновения разнообразных факторов, влияющих на эффективность решений, требуют, чтобы эти решения принимались быстро и в то же время были хорошо обоснованы. Опыт, интуиция, чувство перспективы в сочетании с информацией помогают специалистам точнее выбирать наиболее важные цели и направления развития, находить наилучшие варианты решения сложных научно-технических и социально-экономических задач в условиях, когда нет информации о решении аналогичных проблем в прошлом.

  Использование метода экспертных оценок помогает формализовать процедуры сбора, обобщения и анализа мнений специалистов с целью преобразования их в форму, наиболее удобную для принятия обоснованного решения.

  Но, следует заметить, что метод экспертных оценок не может заменить ни административных, ни плановых решений, он лишь позволяет пополнить информацию, необходимую для подготовки и принятия таких решений. Широкое использование экспертных оценок правомерно только там, где для анализа будущего невозможно применить более точные методы.

  Экспертные методы непрерывно развиваются и совершенствуются. Основные направления этого развития определяются рядом факторов, в числе которых можно указать на стремление расширить области применения, повысить степень использования математических методов и электронно-вычислительной техники, а также изыскать пути устранения выявляющихся недостатков.

  Несмотря на успехи, достигнутые в последние годы в разработке и практическом использовании метода экспертных оценок, имеется ряд проблем и задач, требующих дальнейших методологических исследований и практической проверки. Необходимо совершенствовать систему отбора экспертов, повышение надежности характеристик группового мнения, разработку методов проверки обоснованности оценок, исследование скрытых причин, снижающих достоверность экспертных оценок.

  Однако, уже и сегодня экспертные оценки в сочетании с другими математико-статистическими методами являются важным инструментом совершенствования управления на всех уровнях.


СПИСОК ЛИТЕРАТУРЫ:

       1. Афанасьев В.Г. Научное управление обществом. М.: Полит­издат, 1968. 183 с.

      2. Беклешев В.К., Завлин П.Н. Нормирование труда в НИИ и КБ. М.: Экономика, 1973. 203 с.

       3. Берж К. Теория графов и ее применения. Изд-во иностр. лит. 1962 196 с.

       4. Бешелев С.Д., Гурвич Ф.Г. Экспертные оценки. М.: Наука, 1973. 246 с.

       5. Бешелев С.Д., Гурвич Ф.Г. Экспертные оценки в при­нятии плановых решений. М.: Экономика, 1976. 287 с.

       6. Бешелев С.Д., Гурвич Ф.Г. Математико-статистические методы экспертных оценок. М.: Статистика, 1980. 263 с.

       7. Вентцель Е.С. Теория вероятностей. М.: Наука, 1969. 368 с.

       8. Волгин Б.А Деловые совещания. М.: Московский рабочий, 1972. 204 с.

       9. Диксон Дж, Проектирование систем: изобретательство, ана­лиз, принятие решений. М.: Мир, 1969. 323 с.

10. Добров Г.М., Ершов Ю.В., Левин Е.И., Смир­нов Л.П. Экспертные оценки в научно-техническом прогнози­ровании. Киев: Наукова думка, 1974. 263 с.

11. Евланов Л.Г. Принятие решений в условиях неопределен­ности. М.: ИУНХ, 1976. 196 с.

12. Евланов Л.Г., Кутузов В.А. Экспертные оценки в управлении. М.: Экономика, 1978. 133 с.

13. Карданская Н. Принятие управленческого решения. М.: ЮНИТИ, 1999. 407 с.

14. Кемени Д., Снелл Д. Кибернетическое моделирование. М.: Советское радио, 1972. 234 с.

15. Кравченко Т.К. Процесс принятия плановых решений. М.: Экономика, 1974. 183 с.

16. Миркин Б.Г. Проблема группового выбора. М.: Наука, 1974. 256 с.                           .    17. Михеев В.И. Социально-психологические аспекты управле­ния. Стиль и методы работы руководителя. М.: Молодая гвар­дия, 1975. 181 с.

18. Пфанцагль И. Теория измерений. М.: Мир, 1976. 278 с.

19. Тихомиров Ю.А. Управленческое решение. М.: Наука, 1996. 278 с.

20. Федоренко Н.П. Оптимизация экономики. М.: Наука, 1977. 236 с.

21. Ямпольский С.М., Лисичкин В.А. Прогнозирование научно-технического прогресса. М.: Экономика, 1974. 302 с.


Страницы: 1, 2, 3, 4


на тему рефераты
НОВОСТИ на тему рефераты
на тему рефераты
ВХОД на тему рефераты
Логин:
Пароль:
регистрация
забыли пароль?

на тему рефераты    
на тему рефераты
ТЕГИ на тему рефераты

Рефераты бесплатно, реферат бесплатно, курсовые работы, реферат, доклады, рефераты, рефераты скачать, рефераты на тему, сочинения, курсовые, дипломы, научные работы и многое другое.


Copyright © 2012 г.
При использовании материалов - ссылка на сайт обязательна.