на тему рефераты
 
Главная | Карта сайта
на тему рефераты
РАЗДЕЛЫ

на тему рефераты
ПАРТНЕРЫ

на тему рефераты
АЛФАВИТ
... А Б В Г Д Е Ж З И К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я

на тему рефераты
ПОИСК
Введите фамилию автора:


Курсовая работа: Проектирование фундаментов сборочного цеха


Курсовая работа: Проектирование фундаментов сборочного цеха

КУРСОВОЙ ПРОЕКТ

На тему:

«Проектирование фундаментов сборочного цеха»

Брест - 2008


Введение

Основания и фундаменты зданий и сооружений служат для восприятия нагрузок от строительных конструкций, технологического оборудования и нагрузок на полы.

Проектирование оснований и фундаментов выполняется в соответствии с СНБ 5.01.01-99 “Основания и фундаменты зданий и сооружений”. При проектировании оснований и фундаментов необходимо учитывать следующие положения:

- обеспечение прочности и эксплуатационных требований зданий и сооружений (общие и неравномерные деформации сооружения не должны превышать допустимые);

- максимальное использование прочностных и деформационных свойств грунтов;

- максимальное использование прочности материала фундаментов;

- достижение минимальной стоимости, материалоемкости и трудоемкости.

Выбор типа оснований или конструктивных решений фундаментов выполняется на основании технико-экономических показателей, получаемых с помощью вариантного проектирования.

Выбор основания производится в зависимости от инженерно-геологических условий площадки строительства, конструктивных особенностей проектируемого здания и сооружения, возможностей местных строительных организаций. Грунты основания должны обеспечивать надежную работу конструкций зданий и сооружений при минимальных объёмах строительных работ по устройству фундаментов и сроках их выполнения. Деформации и устойчивость грунтов основания зависят от особенностей приложения нагрузки, от размеров и конструкции фундамента и всего сооружения. В свою очередь, основные размеры, конструкция фундамента и конструктивная схема сооружения назначаются в зависимости от геологического строения строительной площадки, сжимаемости слагающих её грунтов, а также от давлений, которые грунты могут воспринять.

В качестве основания не рекомендуется использовать илы, торф, рыхлый песчаный и текучепластичный глинистый грунт.

При свайных фундаментах грунты основания должны позволять максимально использовать прочность материалов свай при минимальном их сечении, длине и заглублении подошвы ростверка.

При выборе основания зданий и сооружений необходимо учитывать специальные работы: планировочные работы, водопонижение и т.д. Выполнение этих работ требует дополнительного времени и затрат и может влиять на выбор конструкций.

Принятые конструкции фундаментов должны быть технологичны в строительном производстве

В строительном деле решения механики грунтов используются для проектирования сооружений в промышленном и гражданском строительстве, гидротехническом, железнодорожном и автодорожном строительстве и т.д.


1. Исходные данные

Таблица 1а. Физические характеристики грунтов

Мощность слоёв по скважинам, м Расстояние от поверхности до УГВ, м Гранулометрический состав,%

Плотность частиц rS, г/см3

Плотность грунта r, г/см3

Влажность,% Пределы пластичности
Размеры частиц в мм
>2мм 2-0.5мм 0.5-0.25мм 0.25-0.1мм <0.1мм

раскаты- вания Wр,%

текучести WL,%

СКВ.1 СКВ. 2 СКВ. 3 СКВ. 1 СКВ.2 СКВ. 3
2.5 2.0 1.5 2.6 2.0 1.9 - 6.0 6.0 18.0 70.0 2.71 1.82 45.0 28.0 46.0
2.5 3.0 5.0 4.0 12.0 18.0 26.0 40.0 2.66 1.94 23.0 - -
- - - 0.5 19.5 27.0 18.0 35.0 2.65 1.96 24.5 - -

Таблица 1б. Данные о мощности геологических слоев

Абсолютные отметки устья скважин, м № слоя Мощность слоев, м по скважинам Расстояние от поверхности до уровня подземных вод, м
скв.1 скв.2 скв.3 скв.1 скв.2 скв.3 скв.1 скв.2 скв.3
136.5 136.7 136.5 1 2.5 2.0 1.5 2.6 2.0 1.9
2 2.5 3.0 5.0
3

Сборочный цех

Здание каркасного типа. Основной несущей конструкцией здания является однопролетная рама с шарнирно закрепленным ригелем, пролетом 24 м. Железобетонные стойки каркаса размером 60*40 см в нижней части защемлены в фундаменте. К основному зданию примыкает вспомогательный корпус, выполненный по конструктивной схеме с неполным каркасом. Несущие наружные стены выполнены из красного кирпича толщиной 51 см. Удельный вес кладки 18 кН/м3. Продольный каркас выполнен из ригелей размером 30*30 см.


2. Оценка инженерно-геологических условий строительной площадки

Скважина №1 (абсолютная отметка устья скважины – 136.5 м, глубина отбора образца 1,3 м).

Показатель пластичности

фундамент показатель геологический площадка

Jр=wL-wp

Jр=46-28=18%

По табл.4 [2] при Jр=18%>17% грунт - глина.

Показатель текучести

JL= (W -WP) / (WL –WP),

JL= (45.0-28.0) / (46.0-28.0) =0.94

По табл. 7[2] при 0.75<JL=0.94≤1.0 глина текучепластичная.

Плотность грунта в сухом состоянии

rd=r/(1+0.01W),

rd=1.82 / (1+0.01*45.0) = 1.26 г/см3

Коэффициент пористости е =rs/rd-1,

е =2.71 /1.26– 1 = 1.15

Степень влажности

S r=0.01*W*rs/е*rw,

S r=0.01 * 45.0* 2.71 / 1.15*1.0 = 1.06

По табл.9 [2] нормативное значение модуля деформации при е=1.15 для глины текучепластичной (JL=0.94) Е=не определены; по табл. 11 [2] нормативные значения удельного сцепления и угла внутреннего трения при е=1.15 для глины текучепластичной (JL=0.94) с, j не определены; по табл. 12 [2] расчётное сопротивление при е=1.15 для глины текучепластичной (JL=0.94) не нормируется.

Скважина №2 (абсолютная отметка устья скважины – 136.7 м, глубина отбора образца 4.0 м).

Т.к. показатель раскатывания и показатель текучести не определены, следовательно, грунт песчаный. Исходя из гранулометрического состава (содержание частиц >2 мм – 4%, >0,5 мм – 16%, >0.25 мм – 34%, >0.1 мм – 60%, <0.1 мм – 100.0%) частиц с размером >0.1 мм содержится 60%, что меньше 75%, т.е. по таблице 3[2] данный грунт – песок пылеватый.

Плотность грунта в сухом состоянии, rd=1.94/(1+0.01*23.0)=1.58 г/см3

Коэффициент пористости грунта, е =2,66/1,58-1=0.68 по табл. 5 [2] при 0.6≤е=0.68≤0.8 песок средней плотности.

Степень влажности S r=0.01*23,0*2.66/0.68*1.00=0,9

По табл. 6 [2] при 0,8<S r=0.9≤1.0 песок насыщенный водой.

По табл. 8 [2] нормативное значение модуля деформации при е=0.68 для песка пылеватого Е=15.9 МПа; по табл. 10 [2] нормативные значения удельного сцепления и угла внутреннего трения при е=0.68 для песка пылеватого с=3.4 кПа, j=28.8°; по табл. 12 [2] расчётное сопротивление для песка пылеватого средней плотности насыщенного водой R=100 кПа.

Скважина №3 (абсолютная отметка устья скважины – 136.5 м, глубина отбора образца 7.0 м).

Т.к. показатель раскатывания и показатель текучести не определены, следовательно, грунт песчаный. Исходя из гранулометрического состава (содержание частиц >2 мм – 0.5%, >0,5 мм – 20%, >0.25 мм – 47%, >0.1 мм –65%, <0.1 мм – 100.0%) частиц с размером >0.1 мм содержится 65%, что меньше 75%, т.е. по таблице 3[2] данный грунт – песок пылеватый.

Плотность грунта в сухом состоянии,

rd=1.96/(1+0.01*24.5)=1.57 г/см3

Коэффициент пористости грунта, е =2,65/1,57-1=0.69 по табл. 5 [2] при 0.6≤е=0.68≤0.8 песок средней плотности.

Степень влажности S r=0.01*24.5*2.65/0.69*1.00=0,94

По табл. 6 [2] при 0,8<S r=0.94≤1.0 песок насыщенный водой.

По табл. 8 [2] нормативное значение модуля деформации при е=0.69 для песка пылеватого Е=15.2 МПа; по табл. 10 [2] нормативные значения удельного сцепления и угла внутреннего трения при е=0.69 для песка пылеватого с=3.2 кПа, j=28.4°; по табл. 12 [2] расчётное сопротивление для песка пылеватого средней плотности насыщенного водой R=100 кПа.

Таблица 2 Сводная таблица физико-механических характеристик грунтов

Наименование грунта

rs т/м3

r, т/м3

rd, т/м3

W,%

Wp,%

WL,%

Jp,%

JL

е Sr

Еn, МПа

сn, кПа

 

gs, кН/м3

g, кН/м3

gd, кН/м3

 

2 6 7 8 9 10 11 12 13 14 15 16 17
Глина текуче-пластичная

2.71

27.1

1.82

18.2

1.26

12.6

45.0 28.0 46.0 18 0.94 1.15 1.06 - -
Песок пылеватый средней плотности насыщенный водой

2.66

26.6

1.94

19.4

1.58

15.8

23.0 - - - - 0.68 0.9 15.9 3.4
Песок пылеватый средней плотности насыщенный водой

2.65

26.5

1.96

19.6

1.57

15.7

24.5 - - - - 0.69 0.94 15.2 3.2

Согласно инженерно-геологического разреза строительная площадка имеет абсолютные отметки 136,5-136.7 м. Грунты имеют слоистое напластование с выдержанным залеганием грунтов. Первый слой – глина текучепластичная с отсутствием физико-механических свойств - не может служить в качестве основания фундаментов. Второй слой – песок пылеватый, средней плотности, насыщенный водой – может служить в качестве основания фундаментов мелкого заложения. Третий слой – песок пылеватый, средней плотности, насыщенный водой – может служить в качестве оснований свайных фундаментов.

Скважины расположены друг от друга на расстоянии 30 м и 41,7 м.

Принимаем планировочную отметку земли исходя из равенства объемов выемки и насыпки 136.6 м.


3. Вариантное проектирование

Согласно задания по курсовому проектированию рассматриваем два варианта фундаментов:

-фундаменты на естественном основании;

-фундаменты свайные.

В качестве расчётного принимаем сечение 7-7 с максимальной нагрузкой:

Nn=1115 кН; Mn=64 кНм, Qn=23 кН

Расчет по скважине №3.

3.1 Расчёт фундамента мелкого заложения на естественном основании

Основания рассчитывают по двум группам предельным состояний:

1) по несущей способности;

2) по деформациям.

Расчёт по первому предельному производится для обеспечения несущей способности и ограничения развития чрезмерных пластических деформаций грунта основания с учётом возможных неблагоприятных воздействий и условий их работы в период строительства и эксплуатации сооружений; по второму предельному состоянию – для ограничения абсолютных или относительных перемещений конструкций и оснований такими пределами, при которых обеспечивается нормальная эксплуатация сооружения.

3.1.1 Определение глубины заложения

Определяем расчётную глубину промерзания

df1=df*kh,


где df – нормативная глубина промерзания (по рис.III.1 [1]для г. Воронеж df=1,3*0. 23/0.23=1.1 м), где отношение 0.23/0.23 принято для глины; kh – коэффициент, учитывающий влияние теплового режима сооружения (по табл. 5.3[8] при t=10°С в здании без подвала с полами по грунту коэффициент kh=0.7).

df1=1.1*0.7=0.77 м

Инженерно-геологические условия определяют слой грунта, на который можно опереть фундамент.

d3=hненес.+0.2 =1.9+0.2=2,1 м,

где hненес. – мощность ненесущего слоя грунта, м

Принимаем верхний обрез фундамента на отметке -0.500 м, учитывая высоту фундаментной балки 0,45 м, устанавливаемой на подколонник (см. рис. 3.2.1). Минимальная высота фундамента: с учётом глубины заделки колонны сечением 0.4х0.6 м в стакан (0.6 м), возможности рихтовки (0.05 м) её, минимальной высоты ступени 0.3 м. Н=0.6+0.05+0.3=0.95 м

Принимаем расчётную глубину заложения фундамента 1,85 м, что больше 0.77 м. Нф=1.5 м.

3.1.2 Определение размеров подошвы фундамента

Определяем площадь подошвы фундамента в плане по формуле

А=Nn/(R0-gср*dр),

где Nn – расчётная нагрузка по обрезу фундамента, кН;

R0 – расчётное сопротивление грунта основания, кПа;

gср – среднее значение удельного веса материала фундамента и грунта на его уступах (принимаем gср=20 кН/м3);

dр – глубина заложения фундамента, м.

А= 17.7 м2

Ширина квадратного фундамента определяется по формуле b=ÖA=Ö17.7=4.2 м

Определяем расчётное сопротивление грунта

R=(gc1gc2 /k)*(Mg*kz*b*g||+Mq*dp*g||‘+(Mq-1)*dn*g||‘+Mc*c||),

При вычислении R значения характеристик j||, g||,с|| и коэффициентов gc1, gc2 принимаем для слоя грунта, находящегося под подошвой фундамента до глубины zr=0.5b=0.5*4.2=2.1м.

gc1, gc2 – коэффициенты условий работы (табл. В.1[8]):

gc1 =1.1 - для песка; gc2 =1.0;

Mg, Mq,Mc – коэффициенты, принимаемые в зависимости от угла внутреннего трения (табл. 2):

j|| = 28,8° по табл. 16[3]:Mg= 1.046, Mq=5.184, Mc=7.611

kz – коэффициент, принимаемый равным 1 при bÐ10м;

k = 1.1 – коэффициент надёжности, т.к. значения j и с приняты по таблицам;

g|| - осреднённое расчётное значение удельного веса грунтов, залегающих ниже подошвы фундамента, кН/м3 с учётом взвешивающего действия воды.

gвзв =(gs - gw)/(1+ei),

где еi – коэффициент пористости i-го слоя; gsi – удельный вес частиц грунта i-го слоя, кН/м3; gw = 10 кН/м3 – удельный вес воды.

gвзв =(26.6– 10.0) / (1+0.68) =9,88 кН/м3

g|| =10.56 кН/м3

c|| - расчётное значение удельного сцепления грунта: c|| = 3,4 кПа;

g||‘ – расчётное значение удельного веса грунтов, залегающих выше подошвы фундамента, кН/м3:

g||‘ =16.53 кН/м3

d1 –глубина заложения, м: d1 =1.85 м

R= (1.046*1*4.2*10.56+ 5.184*1.85*16.35+ 7.611 *3.4) =234.5 кПа

Ширина подошвы фундамента

b= 2.4 м

Уточняем значение R при b= 2.4 м и zr=0.5b=0.5*2.4=1.2 м.

g|| =11.07 кН/м3

R= (1.046*1*2.4*11.07+ 5.184*1.85*16.35+ 7.611 *3.4) =215.6 кПа

Ширина подошвы фундамента

b= 2.5 м

Уточняем значение R при b= 2.5 м и zr=0.5b=0.5*2.5=1.25 м.

g|| =11.02 кН/м3

R= (1.046*1*2.5*11.02+ 5.184*1.85*16.35+ 7.611 *3.4) =216.7 кПа

Вычисленное значение R отличается от предыдущего менее чем на 5% (0.5%).

Следовательно, далее уточнение размеров производить не требуется.

Окончательно принимаем b=2.5 м.

Определяем схему загружения фундамента. Определяем эксцентриситет

е =0,07м

Т.к. е=0.07 м<b/30=2,5/30=0.083 м, то размеры фундамента определяем как для центрально загруженного фундамента, т.е. будет квадратным в плане.

Принимаем l =2.5 м

Проверяем выполнение условий


Рmax= N|| /A+ gср*dр+ SM|| /W £ 1.2R,

Pmin= N|| /A+gср*dр- SM|| /W> 0

Рmax =+ 20*1.85+= 253,2кПа £ 1.2*216,7=260кПа

W=b*l2 / 6= 2.5*2.52 / 6= 2.6м3

Рmin=+ 20*1.85 - = 177.6кПа > 0

Рср =+ 20*1.85= 215.4кПа < 216.7кПа (0.6%)

Условие выполняется.

3.1.3 Конструирование тела фундамента

Принимаем конструкцию стаканного типа с подколонником. Толщину стенок стакана назначаем по верху 225 мм, что больше 150 мм для фундаментов с армированной частью.

Зазор между колонной и стаканом 75 мм. Т.к. размеры колонны в плане 0.6х0.4 м, то размеры подколонника в плане ℓcf = 600+2*225+ 2*75= 1200 мм

bcf =400+2*225+ 2*75= 1000 мм

Глубину стакана назначаем 650 мм.

Вынос ступени: С1 =(ℓ - ℓcf)/ 2= (2.5 – 1,2)/ 2= 0.65 м

С2 =(b - bcf)/ 2= (2.5 – 1.0)/ 2= 0.75 м

Принимаем 2 ступени высотой 0,3 м.

Конструкция тела фундамента см. рис. 3.1.2.


3.1.4 Расчёт фундаментов по деформациям

Расчёт осадки фундамента производится исходя из условия:S £ Su, где S – величина конечной осадки отдельного фундамента, определяемая расчётом, см; Su- предельная величина осадки основания фундаментов зданий и сооружений, см (по табл. Б.1, п. 1 [7] Su =8 см).

Страницы: 1, 2


на тему рефераты
НОВОСТИ на тему рефераты
на тему рефераты
ВХОД на тему рефераты
Логин:
Пароль:
регистрация
забыли пароль?

на тему рефераты    
на тему рефераты
ТЕГИ на тему рефераты

Рефераты бесплатно, реферат бесплатно, курсовые работы, реферат, доклады, рефераты, рефераты скачать, рефераты на тему, сочинения, курсовые, дипломы, научные работы и многое другое.


Copyright © 2012 г.
При использовании материалов - ссылка на сайт обязательна.