![]() |
|
|
Доклад: Астрономические причины хронологических сдвигов Ясно, что подобная строгость для аспектов возможна лишь
при гораздо большей точности определения положения планет, для чего нужны
эфемериды, выпущенные в конце 16 века, или компьютерные программы - ведь не
каждый день пригоден для необходимых наблюдений по множеству причин, либо же
нужна точная теория планет. Без этого придётся использовать ещё большие
допуски. Например, в индийской астрологии, носящей черты архаичности, строгость
допусков (орбов) гораздо меньшая [12, стр. 49]: Далее на странице 58 перечисляются аспекты-связки планет в количестве 23 шт. - некоторые из "великого множества". Дана ссылка на вдохновляющую названием книгу Рамана "300 важных комбинаций". АСТРОЛОГИЧЕСКАЯ ГИПОТЕЗАТеперь, после короткого введения в астрологию, я могу уточнить астрологическую гипотезу возникновения хронологических сдвигов: Хронологи 16 века, предположительно И. Скалигер или (и) его отец, датировали опорные события глобальной хронологической карты следующим образом. Характеру события, как его понимали, сопоставляли по астрологической науке аспекты планет или целый гороскоп, а затем подбирали подходящую дату, исходя из астрономических и математических знаний, которыми располагали. При этом каждому набору аспектов (в зависимости от выбранного орба) может соответствовать несколько датировок. Разность между двумя решениями называется квазипериодом этих аспектов (поскольку при сложении квазипериодов складываются и соответствующие допуски, могущие выйти за величину орба, то они не обязаны быть настоящими периодами). В итоге, эти квазипериоды породили хронологические сдвиги скалигеровской хронологической карты. Внутри этой гипотезы есть много неявных допущений. Одно из самых коварных таково. Астрологи сумели так характеризовать дубликатные события, что они приобрели одинаковые астрологические характеристики, по крайней мере, в отношении аспектов. То есть, они обнаружили числовые инварианты события, независимые от конкретного изложения его в виде текста. И поскольку хотя бы один из дубликатов, как мы надеемся, стоит всё же на своём месте временной шкалы - этот факт можно расценить как триумф астрологии 16 века. Другое объяснение мне кажется более правильным: все дубликаты, разнесённые на "астрологические интервалы",- фантомны. Косвенным подтверждением последней гипотезы, служит существование весьма небольшого количества "неастрологических" хронологических сдвигов, то есть таковых, которые не присутствуют среди квазипериодов любых возможных аспектов. Некоторые следствия из этих рассуждений будут изложены в конце моей части работы. Теперь выясним - что означает повторение аспекта двух планет (или планеты и Солнца)? При ответе будем исходить из гелиоцентрической системы, принятой в астрономиии. Планеты солнечной системы подразделяются на внутренние - Меркурий и Венеру, внешние - Марс, Юпитер, Сатурн (и другие, в 16 веке неизвестные), а так же Луну - спутник Земли. Внутренние планеты находятся к Солнцу ближе Земли и поэтому имеют ограниченный аспект по отношению к Солнцу. Наибольшее отклонение (элонгация) Меркурия от Солнца, как оно видится с Земли, составляет 29 градусов, следовательно, он может находиться только в соединении или семисекстиле с Солнцем. Наибольшая элонгация Венеры - 48 градусов, что может соответствовать соединению, семисекстилю или семиквинтилю. Внешние планеты и Луна могут иметь любой аспект с Солнцем. Повторение аспекта двух внешних планет означает, что более быстрая из них, ближайшая к Солнцу, обогнала дальнюю на целое число кругов (с точностью до орба). Повторение аспекта по отношению к Солнцу внешней планеты, означает, что Земля обогнала эту планету на целое число кругов. В этом рассуждении я пренебрегаю эллиптичностью орбит внешних планет и Земли, это допустимо тем более, что они имеют небольшой эксцентриситет (напомню, что мы рассматриваем только планеты известные в 16 веке), и, таким образом, возможная погрешность поглощается орбом. Те же рассуждения верны и в отношении Луны - надо лишь помнить, что в геоцентрической системе принятой в астрологии, Луна - самое быстровращающееся вокруг Земли тело. Совсем иначе происходит, когда повторяется аспект внутренней планеты по отношению к любой иной. Дело в том, что с Земли мы можем наблюдать только элонгацию этой планеты, и если она не является максимальной из возможных, то она повторяется дважды на интервале синодического оборота планеты (от одного нижнего соединения, когда планета расположена строго между Землёй и Солнцем, до следующего такового же). Таким образом, повторы аспектов внешних планет и Солнца не зависят от самих аспектов и вычисляются через величины периодов синодических оборотов (время от одного геоцентрического соединения планеты с Солнцем до следующего). Тоже самое верно и в отношении Луны. А повторы аспекта внутренней планеты состоит из двух почти периодических серий, смещение между которыми зависит от этого аспекта. К тому же Меркурий имеет сильно эллиптическую орбиту и весьма сомнительно, что в 16 веке могли сколько-нибудь точно предсказывать его поведение в будущем или прошлом. Этот факт можно пронаблюдать на следующем примере, взятом из книги [11, стр. 140-141]. Там приводится натальная карта (гороскоп рождения) датского короля Христиана II. Взятый, как утверждается, из книги конца 16 века: Гаркеус "Astrologiae methodus", Basil. 1576. Альфред Леманн, автор [11], пишет, что у Гаркеуса гороскоп был несколько (!?) неполон и недостающие части были добавлены самим Леманном, и это, очевидно, произошло до Копенгагенского издания его книги в 1893 году.
Считая последнюю цифру результатом округления, обращением соответствующей величины получим сидерические средние скорости (в кругах на день):
Вычитая из звёздных скоростей планет скорость Земли получим средние угловые синодические скорости планет (в оборотах на день):
Луна геоцентрически обгоняет Солнце, поэтому её скорость положительна, прочие планеты, наоборот, отстают, и поэтому их скорости получились отрицательными, что для нашей проблемы несущественно. Обращая полученные величины, найдём синодические периоды обращения планет (в днях на оборот):
Предыдущую систему неравенств можно записать через
средние угловые скорости, где V*=1/T*: Величина D, которую мы ищем, ограничена 2 тысячами лет
в днях, - посмотрим какие погрешности мы можем получить, если пренебрежём
поправками к скоростям: Таким образом, в орбе надо учитывать дополнительные 4
градуса на ошибку округления. А скорости можно взять таковыми (в оборотах на
день): Ясно, что в 16 веке эту систему неравенств нельзя было решить перебором натуральных D, как мы можем себе позволить сделать это с помощью компьютера, и вряд ли можно было сделать это с помощью итерационных методов (как я решал её сначала). Но если мы вспомним снова - что же мы ищем? Окажется, что у математиков 16 века был инструмент для нахождения "Общих Кратных" и "Общих Делителей" - алгоритм Евклида, опирающийся на операцию деления с остатком. Считается, что этот алгоритм придуман для решения абстрактных арифметических задач, но я полагаю, что создан он для решения именно таких проблем, которые мы разбираем. В следующей главе мы рассмотрим пример такого применения. АЛГОРИТМ ЕВКЛИДА И НАХОЖДЕНИЕ МЕТОНОВА ЦИКЛАСначала я напомню операцию деления с остатком одного числа A (делимого) на другое B (делитель), делитель должен быть отличным от нуля, и удобнее, чтобы он был положительным. При этих условиях существуют единственные числа Z - целое (неполное частное) и R (остаток от деления A/B): 0 =< R < |B| такие, что A = B*Z + R Если A и B - целые, таково же и R, если B положительно, Z = [A/B] - целой части числа A/B. Можно и иногда удобно делить с остатком усовершенствованным способом, выбирая остаток в диапазоне от -|B|/2 до |B|/2, и тогда Z будет целым числом, ближайшим к A/B. Деление с остатком - это шаг алгоритма Евклида нахождения "Наибольшего Общего Делителя" (НОД) двух чисел. Суть его в следующем (A и B не должны быть нулевыми одновременно): 1) Пусть B - ненулевое, тогда делим A на B с остатком: A = B*Z1 + R1, 0 =< R1 < |B|, если R1 = 0, тогда по определению НОД(A,B) = |B|, иначе 2) Делим B на R1 с остатком: B = R1*Z2 + R2, 0 =< R2 < R1 < |B|, если R2 = 0, доказывается, что тогда НОД(A,B) = R1, иначе 3) Делим R1 на R2 с остатком: R1 = R2*Z3 + R3, 0 =< R3 < R2 < R1 < |B|, если R3 = 0, доказывается, что тогда НОД(A,B) = R2, иначе продолжаем аналогично. Если R{i+1} - ненулевой, мы делим на него с остатком предыдущий остаток: i+2) Ri = R{i+1}*Z{i+2} + R{i+2}, 0 =< R{i+2} <...< R1 < |B|, Остатки убывают к нулю, а если A и B - целые, остаток обнуляется на некотором шаге: k+1) R{k-1} = Rk*Z{k+1} + 0, где Rk - ненулевой Оказывается, что в этом случае НОД(A,B) = Rk (То есть, Rk наибольшее число из таких, что A/Rk и B/Rk - целые). Если A и B - рациональные числа, алгоритм Евклида так же заканчивается за конечное число шагов, давая НОД. Например, найдём НОД(1/4, 1/6): 1. 1/4 = (1/6)*1 + 1/12; Если же A/B иррационально, алгоритм Еклида продолжается бесконечно, а положительные остатки убывают к нулю положительные остатки от деления A на B. В качестве НОД'а в этом случае можно выбрать любой из них, задаваясь необходимой погрешностью. Это применяется в следующей теории - шаги алгоритма Евклида можно записать в виде "непрерывной" или "цепной" дроби представляющей A/B: A/B = Z1 + R1/B = Z1 + 1/(B/R1) = Z1 + 1/(Z2 + R2/R1) = = Z1 + 1/(Z2 + 1/(Z3 + R3/R2)) = ... = Z1 + 1/(Z2 + 1/(Z3 + 1/(Z4 + ...))) =: [Z1,Z2,Z3,Z4,...] Если какой-то остаток Rk = 0, тогда цепная дробь
заканчивается k "этажами" и получим A/B = [Z1,Z2,Z3,...,Zk] = Lk/Nk -
рациональное число, после упрощения. Если же Rk - ненулевое, тогда
[Z1,Z2,Z3,...,Zk] = Lk/Nk называется k-ой подходящей дробью для A/B - она
наиболее близка к A/B среди всех дробей со знаменателем не большим Nk. То есть,
A/B примерно равно Lk/Nk, причём: Итак, поскольку Rk убывают, можно найти такую подходящую дробь [Z1,Z2,Z3,...,Zk] = Lk/Nk, что A*Nk с точностью до выбранной погрешности близко к B*Lk, и эту величину можно выбрать за "Наименьшее Общее Кратное" чисел A и B, НОК(A,B) - наименьшее неотрицательное число нацело делящееся на A и B. При натуральных A и B мы имеем НОК(A,B) = A*B/НОД(A,B), то же верно и для рациональных положительных чисел, для любых положительных это равенство можно считать определением НОК. Применим эту теорию Евклида к длине синодического месяца и длине юлианского года (и то и другое - в днях): 29,53059 и 365,25. Напишем непрерывную дробь для их отношения: 29,53059/365,25 = [0,12,2,1,2,2,24,1,10,...] Разбираем подходящие дроби, их смысл и остатки: То есть, при первом остатке меньшем суток мы получаем метонов цикл, открытый, якобы, в 433 году до н.э., когда и длина юлианского года была неизвестной! При этом считается, что и Евклид жил на сто лет позже афинянина Метона. Однако, наше значение для лунного месяца, возможно, чересчур точное: 29,53059 примерно равно 29 дней 12 часов 44 минуты 3 секунды. Легко убедиться, что та же "метонова" подходящая дробь, соответствующая первому остатку менее суток, получится при выборе длины месяца 29,53 или 29 дней 12 часов 40 минут, или 29 дней 12 часов 45 минут. Что из этого может следовать? Скорее всего, метонов цикл определён с помощью алгоритма Евклида (ведь не очень умно думать, что он вычислен прямыми наблюдениями за 400 лет до изобретения Созигеном юлианского года, а если допустить год длиной 365 суток, а месяц - 29,5 суток, то оптимальное соотношение между ними окажется 99/8: арифметическое расхождение, остаток, составит полсуток, а по наблюдениям за 8 лет - примерно 3,5 суток, что оптимальнее метоновой дроби 235/19для такой длины года). |
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() |
|
Рефераты бесплатно, реферат бесплатно, курсовые работы, реферат, доклады, рефераты, рефераты скачать, рефераты на тему, сочинения, курсовые, дипломы, научные работы и многое другое. |
||
При использовании материалов - ссылка на сайт обязательна. |