на тему рефераты
 
Главная | Карта сайта
на тему рефераты
РАЗДЕЛЫ

на тему рефераты
ПАРТНЕРЫ

на тему рефераты
АЛФАВИТ
... А Б В Г Д Е Ж З И К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я

на тему рефераты
ПОИСК
Введите фамилию автора:


Реферат: Ответы на билеты по биологии 11 класс


 Билет №12

 1. Хемосинтез.

ХЕМОСИНТЕЗ — тип питания бактерий, основанный на усвоении СО2 за счет окисления неорганических соедине­ний. Хемосинтез был открыт в 1888 году русским биологом С.Н.Виноградским, доказавшим способность некоторых бактерий образовывать углеводы, используя химическую энергию. Существует несколько групп хемосинтезирующих бактерий, из которых наибольшее значение имеют нитри­фицирующие, серобактерии и железобактерии. Например, нитрифицирующие бактерии получают энергию для син­теза органических веществ, окисляя аммиак до азотистой, а затем до азотной кислоты, серобактерии — окисляя сероводород до сульфатов, а железобактерии — превращая закисные соли железа в окисные. Освобожденная энергия аккумулируется в клетках хемобактерий в форме АТФ. Процесс хемосинтеза, при котором из СО2 образуется органическое вещество, протекает аналогично темновой фазе фотосинтеза. Благодаря жизнедеятельности бактерий-хемосинтетиков в природе накапливаются большие запасы селитры и болотной руды.

2. Вид и видообразие.

Видом называют совокупность особей, сходных по строе­нию, имеющих общее происхождение, свободно скрещиваю­щихся между собой и дающих плодовитое потомство. Все особи одного вида имеют одинаковый кариотип, сходное поведение и занимают определенный ареал (область рас­пространения).

Одна из важных характеристик вида — его репродуктив­ная изоляция, т. е. существование механизмов, препятст­вующих притоку генов извне. Защищенность генофонда данного вида от притока генов других, в том числе близко­родственных, видов достигается разными путями.

Сроки размножения у близких видов могут не совпадать. Если сроки одни и те же, то не совпадают места размноже­ния. Например, самки одного вида лягушек мечут икру по берегам рек, другого вида — в лужах. При этом случайное осеменение икры самцами другого вида исключается. У многих видов животных наблюдается строгий ритуал поведения при спаривании. Если у одного из потенциальных партне­ров для скрещивания ритуал поведения отклоняется от ви­дового, спаривания не происходит. Если все же спаривание произойдет, сперматозоиды самца другого вида не смогут проникнуть в яйцеклетку, и яйца не оплодотворятся. Фак­тором изоляции также служат предпочитаемые источни­ки пищи: особи кормятся в разных биотопах и вероятность скрещивания между ними уменьшается. Но иногда (при межвидовом скрещивании) оплодотворение все же происхо­дит. В этом случае образовавшиеся гибриды либо отличают­ся пониженной жизнеспособностью, либо оказываются бесплодными и не дают потомства. Известный пример — мул — гибрид лошади и осла. Будучи вполне жизнеспособ­ным, мул бесплоден из-за нарушения мейоза: негомологич­ные хромосомы не конъюгируют. Перечисленные механиз­мы, предотвращающие обмен генами между видами, имеют неодинаковую эффективность, но в комплексе в природных условиях они создают непроницаемую генетическую изоля­цию между видами. Следовательно, вид реально сущест­вующая, генетически неделимая единица органического

мира.

Каждый вид занимает более или менее обширный ареал (от лат. area — область, пространство). Иногда он сравни­тельно невелик: для видов, обитающих в Байкале, он огра­ничивается этим озером. В других случаях ареал вида охва­тывает огромные территории. Так, черная ворона почти по­всеместно распространена в Западной Европе. Восточная Европа и Западная Сибирь населены другим видом — серой вороной. Существование определенных границ распростра­нения вида не означает, что все особи свободно перемещают­ся внутри ареала. Степень подвижности особей выражается расстоянием, на которое может перемещаться животное, т. е.радиусом индивидуальной активности. У растений этот радиус определяется расстоянием, на которое распростра­няется пыльца, семена или вегетативные части, способные Дать начало новому растению.

Для виноградной улитки радиус активности составляет несколько десятков метров, для северного оленя — более ста километров, для ондатры — несколько сот метров. Вследствие ограниченности радиусов активности лесные полевки, обитающие в одном лесу, имеют немного шансов встретиться в период размножения с лесными полевками, населяющими соседний лес. Травяные лягушки, мечущие икру в одном озере, изолированы от лягушек другого озера, расположен­ного в нескольких километрах от первого. В обоих случаях изоляция неполная, поскольку отдельные полевки и лягуш­ки могут мигрировать из одного местообитания в другое.

Особи любого вида распределены внутри видового ареала неравномерно. Участки территории с относительно высокой плотностью населения чередуются с участками, где числен­ность вида низкая или особи данного вида совсем отсутствуют. Поэтому вид рассматривается как совокупность отдельных групп организмов — популяций.

Популяция это совокупность особей данного вида, занимающих определенный участок территории внутри ареала вида, свободно скрещивающихся между собой и час­тично или полностью изолированных от других популя­ций. Реально вид существует в виде популяций. Генофонд вида представлен генофондами популяций. Популяция это элементарная единица эволюции.

3. Приспособление животных организмов к жизни в засушливых местах.

Верблюд- шерсть(защищающая от солнечных лучей), долго может обходиться без пищи и воды(горб),мозолистые подушечки на стопах(не проваливается в песке, от горячего песка), может есть колючки.

Могут изменят температуру своего тела.

Тушканчик- накапливает жир.

Черепахи в жаркий период впадают в спячку.

Билет №13

 1.Работы Г. И. Менделя.

Закон единообразия гибридов первого поколения — первый закон Менделя — называют также законом домини­рования, так как все особи первого поколения имеют оди­наковое проявление признака. Сформулировать его можно следующим образом: при скрещивании двух организмов, относящихся к разным чистым линиям (двух гомози­готных организмов), отличающихся друг от друга по одной паре альтернативных признаков, все первое поко­ление гибридов (F1) окажется единообразным и будет нести признак одного из родителей.

Второй закон Менделя можно сформу­лировать следующим образом: при скрещивании двух потом­ков первого поколения между собой (двух гетерозиготных особей) во втором поколении наблюдается расщепление в определенном числовом соотношении: по фенотипу 3:1, по генотипу 1:2:1.

Третий закон Менделя: при скрещивании двух гомозиготных особей, отличающих­ся друг от друга по двум и более парам альтернативных признаков, гены и соответствующие им признаки на­следуются независимо друг от друга и комбинируются во всех возможных сочетаниях.

2. Экологический фактор и экологический оптимум.

Экологические факторы. Природа, в которой обитает живой организм, является средой его обитания. Окружающие условия многообразны и изменчивы. Не все факторы среды с одинако­вой силой воздействуют на живые организмы. Одни могут быть необходимы для организмов, другие, наоборот, вредны; есть та­кие, которые вообще безразличны для них. Факторы, среды, ко­торые воздействуют на организм, называют экологическими факторами.

По происхождению и характеру действия все экологические факторы разделяют на абиотические, т. е. факторы неоргани­ческой (неживой) среды, и биотические, связанные с влиянием живых существ. Эти факторы подразделяют на ряд частных фак­торов.

Экологические факторы

Абиотические-Свет, температура, влага, ветер, воздух, давление, течения, долгота дня и т. д. Механический состав почвы,  ее водопроницаемость и влагоемкость Содержание в почве или воде эле­ментов питания, газовый состав, со­леность воды, естественный фон ра­диоактивности.

Биотические- Влияние растений на других членов биоценоза

Влияние животных на других чле­нов биоценоза Антропогенные факторы, возникаю­щие в результате деятельности чело­века, например выбросы тяжелых ме­таллов, радионуклидов.

Биологический оптимум. Часто в природе бывает так, что одни экологические факторы находятся в изобилии (например, вода и свет), а другие (например, азот) — в недостаточных количествах. Факторы, снижающие жизнеспособность организ­ма, называют ограничивающими. Например, ручьевая форель живет в воде с содержанием кислорода не менее 2 мг/л. При содержании в воде кислорода менее 1,6 мг/л форель гибнет. Кислород — ограничивающий фактор для форели.

Ограничивающим фактором может быть не только его недо­статок, но и избыток. Тепло, например, необходимо всем расте­ниям. Однако если продолжительное время летом стоит высо­кая температура, то растения даже при увлажненной почве мо­гут пострадать из-за ожогов листьев.

Следовательно, для каждого организма существует наиболее подходящее сочетание абиотических и биотических факторов, оптимальное для его роста, развития и размножения. Наилуч­шее сочетание условий называют биологическим оптимумом.

Выявление биологического оптимума, знание закономернос­тей взаимодействия экологических факторов имеют большое практическое значение. Умело поддерживая оптимальные усло­вия жизнедеятельности сельскохозяйственных растений и жи­вотных, можно повышать их продуктивность.

3. Приспособление животных к хищничеству.

Тигр- зубы подразделяются на резцы, клыки и коренные. Резцы мелкие, а клыки крупные. Среди коренных зубов выделяются 4 коренных зуба, кот. в отличие от др. коренных зубов наз. хищными. Клыками хищники убивают добычу, а коренными зубами перегрызают мышцы и сухожилия. Кишечник короткий, что связано с питанием легко перевариваемой высококалорийной животной пищей. Ключицы отсутствуют. Мозг этих животных отличается сильным развитием извилин и борозд. Питается животной пищей. Имеет острые когти. Подушечки на лапах, благодаря которым могут бесшумно подкрадываться.

Орел- мощный клюв, хорошее зрение, острые и цепкие когти, питается животной пищей.

                                                   

Билет №14

 1. Хромосомная теория наследственности.

Мендель проследил наследование только семи пар при­знаков у душистого горошка. В дальнейшем многие исследо­ватели, изучая наследование разных пар признаков у самых разных видов организмов, подтвердили законы Менделя. Было признано, что эти законы носят всеобщий характер. Однако позже было замечено, что у душистого горошка два признака — форма пыльцы и окраска цветков не дают неза­висимого распределения в потомстве: потомки остались по­хожими на родителей. Постепенно таких исключений из третьего закона Менделя накапливалось все больше. Стало ясно, что принцип независимого распределения в потомстве и свободного комбинирования распространяется не на все гены. В самом деле, у любого организма признаков очень много, а число хромосом невелико. Следовательно, в каж­дой хромосоме должно находиться много генов. Каковы же закономерности наследования генов, локализованных в одной хромосоме? Этот вопрос был изучен выдающимся американ­ским генетиком Т. Морганом.

Предположим, что два гена — А и В находятся в одной хромосоме, и организм, взятый для скрещивания, гетерози­готен по этим генам.

В анафазе первого мейотического деления гомологичные хромосомы расходятся в разные клетки и образуются два сорта гамет вместо четырех, как должно было бы быть при дигибридном скрещивании в соответствии с третьим зако­ном Менделя. При скрещивании с гомозиготным организ­мом, рецессивным по обоим генам — аа и bb, получается рас­щепление 1:1 вместо ожидаемого при дигибридном анали­зирующем скрещивании 1:1:1:1.

Такое отклонение от независимого распределения озна­чает, что гены, локализованные в одной хромосоме, наследу­ются совместно.

Рассмотрим конкретный пример. Если скрестить муш­ку дрозофилу, имеющую серое тело и нормальные крылья, с мушкой, обладающей темной окраской тела и зачаточны­ми крыльями, то в первом поколении гибридов все мухи будут серыми с нормальными крыльями. Это гетерозиготы по двум парам аллельных генов, причем ген, определяющий серую окраску брюшка, доминирует над темной окраской, а ген, обусловливающий развитие нормальных крыльев, — над геном недоразвитых крыльев.

При анализирующем скрещивании гибрида Ft с гомози­готной рецессивной дрозофилой (темное тело, зачаточные крылья) подавляющее большинство потомков F2 будет сходно с родительскими формами.

2. Сходство и различие между человеком и другими животными.

Рвзличия

а) Обусловленные прямохождением: - S - образный позвоночник; - широкий таз и грудная клетка; - сводчатая стопа; - мощные кости нижних конечностей; б) Обусловленные трудовой деятельностью: - противопоставление большего пальца на руке остальным; в) Обусловленные развитым мышлением: - преобладание мозговой части черепа над лицевой; - развитый головной мозг.

Сходство прослеживается в строении человека и других позвоночных животных. Человек относится к млекопитающим, так как имеет диафрагму, молочные железы, дифференцированные зубы (резцы, клыки и коренные), ушные раковины, зародыш его развивается внутриутробно. У человека есть такие же органы и системы органов, как и у других млекопитающих: кровеносная, дыхательная, выделительная, пищеварительная и др.

О родстве человека с животными свидетельствуют также рудименты и атавизмы. У человека свыше 90 рудиментарных органов: копчик, аппендикс, зубы мудрости и др. Среди атавизмов можно назвать сильно развитый волосяной покров на теле, дополнительные соски, хвост. Эти признаки были развиты у предков человека, но изредка встречаются и у современных людей.

Сходство прослеживается и в развитии зародышей человека и животных. Развитие человека начинается с одной оплодотворенной яйцеклетки. За счет ее деления образуются новые клетки, формируются ткани и органы зародыша. На стадии 1,5-3 месяцев внутриутробного развития у человеческого плода развит хвостовой отдел позвоночника, закладываются жаберные щели. Мозг месячного зародыша напоминает мозг рыбы, а семимесячного - мозг обезьяны. На пятом месяце внутриутробного развития зародыш имеет волосяной покров, который впоследствии исчезает. Таким образом, по многим признакам зародыш человека имеет сходство с зародышами других позвоночных.

Поведение человека и высших животных очень сходно. Особенно велико сходство человека и человекообразных обезьян. Им свойственны одинаковые условные и безусловные рефлексы. У обезьян, как и у человека, можно наблюдать гнев, радость, развитую мимику, заботу о потомстве. У шимпанзе, например, как и у человека, различают 4 группы крови. Люди и обезьяны болеют болезнями, не поражающими других млекопитающих, например холерой, гриппом, оспой, туберкулезом. Шимпанзе ходят на задних конечностях, у них нет хвоста. Генетический материал человека и шимпанзе идентичен на 99%.

3. Составить схему пищевой цепи в лесу

Пищевую цепь, например, составляют растительноядные мышевидные грызуны и зайцы, а также копытные за счет которых существуют хищники: ласка, горностай, куница, волк. Все виды позвоночных служат средой обитания и источником питания для различных наружных паразитов.

Билет №15

 1. Сцепление и кроссинговер. Кроссинговер как источник изменчивости.

Группы сцепления. Число генов у каждого организма, как мы уже отмечали, гораздо больше числа хромосом. Следователь­но, в одной хромосоме расположено много генов. Как насле­дуются гены, расположенные в одной паре гомологичных хро­мосом?

Большую работу по изучению наследования неаллельных ге­нов, расположенных в паре гомологичных хромосом, выполни­ли американский ученый Т. Морган и его ученики. Ученые ус­тановили, что гены, расположенные в одной хромосоме, насле­дуются совместно, или сцепленно. Группы генов, расположен­ные в одной хромосоме, называют группами сцепления. Сцеп­ленные гены расположены в хромосоме в линейном порядке. Число групп сцепления у генетически хорошо изученных объ­ектов равно числу пар хромосом, т. е. гаплоидному числу хро­мосом. У человека 23 пары хромосом и 23 группы сцепления, у гороха 7 пар хромосом и 7 групп сцепления и т. д.

Сцепленное наследование и явление перекреста. Рассмотрим, какие типы гамет будет производить особь, два гена которой находятся в одной хромосоме:------(А)-----(В)------

                    ------(а)------(b)------                                 

Особь с таким генотипом производит два типа гамет: -----(а)----(b)----- и            -----(А)-----(B)----- в равных количе­ствах, которые повторяют комбинацию генов в хромосоме роди­теля.  Было установлено,  однако,  что,  кроме  таких  обычных гамет, возникают и другие, новые

-----(А)-----(b)----- и -----(а)----(B)-----, с но­выми комбинациями генов, отличающимися от родительских хромосом. Было доказано, что причина возникновения но­вых гамет заключается в перекресте гомологичных хромосом.

Гомологичные хромосомы в процессе мейоза перекрещивают­ся и обмениваются участками. В результате этого возникают ка­чественно новые хромосомы. Частота перекреста между двумя сцепленными генами в одних случаях может быть большой, в других — менее значительной. Это зависит от расстояния меж­ду генами в хромосоме. Частота (процент) перекреста между дву­мя неаллельными генами, расположенными в одной хромосоме, пропорциональна расстоянию между ними. Чем ближе располо­жены гены в хромосоме, тем теснее сцепление между ними и тем реже они разделяются при перекресте. И наоборот, чем даль­ше гены отстоят друг от друга, тем слабее сцепление между ни­ми и тем чаще осуществляется перекрест. Следовательно, о рас­стоянии между генами в хромосоме можно судить по частоте перекреста.

Итак, сцепление генов, локализованных в одной хромосоме, не бывает абсолютным. Перекрест, происходящий между гомо­логичными хромосомами, постоянно осуществляет «перетасов­ку» — рекомбинацию генов. Т. Морган и его сотрудники пока­зали, что, изучив явление сцепления и перекреста, можно по­строить карты хромосом с нанесенным на них порядком распо­ложения генов. Карты, построенные по этому принципу, созда­ны для многих генетически хорошо изученных объектов: куку­рузы, мыши, дрожжей, гороха, пшеницы, томата, пло­довой мушки дрозофилы.

Как геологу или моряку совершенно необходима географи­ческая карта, так и генетику крайне необходима генетическая карта того объекта, с которым он работает. В настоящее время создано несколько эффективных методов построения генетичес­ких карт. В результате возникла возможность сравнивать стро­ение генома, т. е. совокупности всех генов гаплоидного набора хромосом, у различных видов, что имеет важное значение для генетики, селекции, а также эволюционных исследований.

2. Симбиотические отношения.

Лишайник всеми воспринимается как единый орга­низм. На самом же деле он состоит из гриба и водоросли. Основу его составляют переплетающиеся гифы (нити) гриба. В рыхлом слое под поверхностью среди гиф гнездят­ся водоросли. Чаще всего это одноклеточные зеленые водоросли. Совместное существование выгодно и грибу, и водорослям. Гриб дает водорослям воду с растворенными минеральными солями, а получает от водоросли органи­ческие соединения, вырабатываемые ею в процессе фото­синтеза, главным образом углеводы. Симбиоз так хорошо помогает лишайникам в борьбе за существование, что они способны поселятся на песочных почвах, на бесплодных скалах, там, где другие растения существовать не могут.

3. Основные биологические события палеозоя.

Палеозой

Кембрийский, ордовикский периоды- Процветание морских позвоночных, Широкое распространение трилоби­тов, водорослей.

Силурийский- Развитие кораллов, трилобитов; по явление бесчелюстных позвоночных. Выход растений на сушу.

Девонский- Появление кистеперых рыб, появле­ние стегоцефалов. Распространение на суше высших споровых растений.

Каменноугольный- Расцвет земноводных, возникновение пресмыкающихся, появление члени­стоногих; уменьшение числа трибо-литов. Расцвет папоротникообразны появление семенных папоротников.

Пермский- Развитие пресмыкающихся. Распро­странение голосеменных. Вымирание трилобитов.

                                                 

Билет №16

1. Мутации и наследственная изменчивость.

Мутации имеют ряд свойств.

1)  возникают внезапно, и мутировать может любая часть ге­нотипа;

2)  чаще бывают рецессивными и реже — доминантными;

3)  могут быть вредными (большинство мутаций), нейтраль­ными и полезными (очень редко) для организма;

4)  передаются из поколения в поколение;

5)  представляют собой стойкие изменения наследственного

материала;

6)  это качественные изменения, которые, как правило, не об­разуют непрерывного ряда вокруг средней величины при- g знака;

7)  могут повторяться.

Мутации могут происходить под влиянием как внешних, так и внутренних воздействий. Различают мутации генеративные — они возникают в гаметах, и соматические — они воз­никают в соматических клетках и затрагивают лишь часть те­ла; такие мутации будут передаваться следующим поколениям только при вегетативном размножении.

По характеру изменений в генотипе мутации подразделя­ются на несколько видов. Точечные, или генные мутации представляют собой изменения в отдельных генах. Это может произойти при замене, выпадении или вставке одного или не­скольких нуклеотидов в молекуле ДНК.

Хромосомные мутации представляют собой изменения частей хромосом или целых хромосом. Такие мутации могут происходить в результате делеции — утраты части хромосо­мы, дупликации — удвоения какого-либо участка хромосомы, инверсии — поворота участка хромосомы на 180°, транслока­ции — отрыва части хромосомы и перемещения ее в новое положение, например, присоединения к другой, негомологич­ной, хромосоме. Структурные хромосомные мутации, как пра­вило, вредны для организма.

Геномные мутации заключаются в изменении числа хро­мосом в гаплоидном наборе. Это может происходить за счет уменьшения или увеличения числа хромосом в гаплоидном наборе. Частный случай геномных, мутаций — полиплоидия — увеличение числа хромосом в генотипе, кратное п. Это яв­ление возникает при нарушении веретена деления при мейозе или митозе. Полиплоиды отличаются мощным ростом, боль­шими размерами. Большинство культурных растений полиплоиды. Тетероплоидия связана с недостатком или избытком хромосом в одной гомологичной паре. Эти мутации вредны для организма; примером может служить болезнь Дауна, при которой в 21-й паре появляется лишняя хромосома.

Комбинативная изменчивость — также относится к на­следственным формам изменчивости. Она обусловлена пере­группировкой генов в процессе слияния гамет и образования зиготы, то есть при половом процессе. Сходство между комбинативной и мутационной изменчивостью заключается в том, что в обоих случаях потомство получает набор генов каждого из родителей. Однако между этими видами изменчивости есть принципиальные отличия.

При комбинативной изменчивости в результате слияния родительских гамет возникают новые комбинации генов, од­нако сами гены и хромосомы остаются неизменными.

При мутационной изменчивости обязательно происходит изменения в самом генотипе: меняются отдельные гены, из­меняется строение хромосом и их число.

Академик Н.И. Вавилов в течение многих лет исследовал закономерности наследственной изменчивости у дикорасту­щих  и  культурных растений  различных  систематических групп. Эти исследования позволили сформулировать закон гомологических рядов наследственной изменчивости, или закон Вавилова. Формулировка этого закона следующая: генетиче­ски близкие роды и виды характеризуются сходными рядами наследственной изменчивости. Таким образом, зная, какие му­тационные изменения возникают у особей какого-либо вида, можно предвидеть, что такие же мутации в сходных условиях будут возникать у родственных видов и родов.

Н.И. Вавилов проследил изменчивость множества призна­ков у злаков. Из 38 различных признаков, характерных для всех растений этого семейства, у ржи было обнаружено 37 признаков, у пшеницы — 37, у овса и ячменя — по 35, у куку­рузы — 32. Знание этого закона позволяет селекционерам за­ранее предвидеть, какие признаки изменятся у того или иного вида в результате воздействия на него мутагенных факторов.

Страницы: 1, 2, 3, 4, 5


на тему рефераты
НОВОСТИ на тему рефераты
на тему рефераты
ВХОД на тему рефераты
Логин:
Пароль:
регистрация
забыли пароль?

на тему рефераты    
на тему рефераты
ТЕГИ на тему рефераты

Рефераты бесплатно, реферат бесплатно, курсовые работы, реферат, доклады, рефераты, рефераты скачать, рефераты на тему, сочинения, курсовые, дипломы, научные работы и многое другое.


Copyright © 2012 г.
При использовании материалов - ссылка на сайт обязательна.