на тему рефераты
 
Главная | Карта сайта
на тему рефераты
РАЗДЕЛЫ

на тему рефераты
ПАРТНЕРЫ

на тему рефераты
АЛФАВИТ
... А Б В Г Д Е Ж З И К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я

на тему рефераты
ПОИСК
Введите фамилию автора:


Реферат: Шпоры по математическому анализу




2. Площадь S фигуры ограничена графиками функции y=f(x) и y=g(x), а так же прямыми АВ и CD (рис 2) вычисляется по формуле:


Определение: Пусть дана дуга кривой АВ. Нанесем на нее произвольные точки Mi (i=0,n) и соединим их хордами (рис 3). Периметр полученной ломаной обозначим Pn. Будем увеличивать число точек Mi на дуге. Длиной дуги кривой АВ называется предел периметра Pn, когда длина наибольшей хорды стремится к нулю (если этот предел существует и не зависит от выбора вершин ломаной). Если дуга задана уравнением y=f(x) на промежутке [a,b] (ищем длину дуги l). Будем считать функцию f(x) непрерывно дифференцируемой. Положенеи произвольных точек Mi определим выбрав абциссы этих точек, т.е. сделав разбиение R отрезка [a,b] точками а=х0< x1< x2<…< xn=b. Длину хорды, соединяющей точки Mi и Mi+1 обозначим ∆li.Ее проекциями на оси координат будут ∆хi ∆уi. Очевидно,


Покажем, как нахождение предела периметра Pn сводится к вычислению интеграла. Представим ∆li в нужном виде:

По формуле конечных приращений Лагранжа



Поставив это выражение ∆уi в формулу ∆li, полуим


Таким образом (1),


Если составить интегральную сумму для функции


с полученными выше точками ξi, то придем к выражению (1), т.е.


кроме того стремление к нулю наибольшей хорда ∆li влечет за собой стремление к нулю


поэтому

(если этот предел существует).


Но по нашим предположениям функция f'(x), а следовательно и функция g(x) непрерывна. Непрерывная функция интегрируема, значит, упомянутый предел существует. Мы доказали, что


Подставляя выражение g(x), получаем формулу длины дуги:

29. Вычисление объема и площади поверхности тела вращения с помощью определенного интеграла.

Пусть тело образовано вращением вокруг оси Ох криволинейной трапеции аАВb, ограниченной сверху графиком непрерывной функции y=f(x). (рис 1) Нахождение объема V этого тела сведем к вычислению интеграла.

Делаем разбиение R отрезка [a,b] точками а=х0< x1< x2<…< xn=b. На отрезке [xi, xi+1] строим прямоугольник высотой f(xi). При вращении этого прямоугольника получается цилиндр с радиусом основания f(xi) и высотой ∆ xi. Его объем равен π[f(xi)]² ∆ xi. Построим такие же целиндры для каждого промежутка [x0,x1], [x1,x2],…[xn-1,xn]. Все цилиндры в совакупности образуют тело, назовем его объем Vn.

Определение: Если существует предел Vn, когда


Стремится к нулю, не зависящей от выбора разбиений R, то этот предел называю объемом тела вращения.

Очевидно,


Данная сумма является интегральной суммой для функции,


Которая непреывна по условию. Следовательно, интеграл сществует. Формула для объема тела вращения имеет вид:


Площадь поверхности вращения.

Если площадь поверхности, образованной вращением кривой АВ (рис 1) задана непрерывна дифференцируемой функций y=f(x), обазначить через Р, то


15. Основные свойства неопределенного интеграла.

1. ∫ Аf(x)dx = A ∫ f(x)dx (постоянный множитель можно выносить за знак интеграла).

2. [f(x)-f(x)]dx=∫f(x)dx+∫f(x)dx (интеграл от суммы функций равен сумме интегралов от этих функций).

16. Интегрирование по частям и замена переменной в неопределенной интеграле.

Замена переменной.

Будем полагать функции f(u) и φ'(x) непрерывными. Замена переменной производится по формуле:


Формула проверяется дифференциалом обеих частей равенства по x (правая часть дифференцируется как сложная функция).

Интегрирование по частям:

Пусть u и v являются функциями x. Умножив обе части равенства  (uv)'=u'v+uv' на dx, получим d(uv)=vdu+udv. Интегрируя приходим к формуле интегрирования по частям


1 Матрицы и действия с ними

Матрицей порядка m´n называется прямоугольная таблица чисел, содержащая m строк и n столбцов. Квадратная матрица порядка m  - m=n. Составляющие матрицу числа называют ее элементами.

Сложение матриц.

При сложения, должны быть равны порядки матриц.

 а11 а12                      в11    в12      _

 а21 а22              в21   в22      _

 

 а11+ в11           а12 + в12

 а21+в21            а12 + в12

 

Умножение матриц на число.

       а11    а12             ва11     ва12

 в    а21    а22       =    ва21     ва22

Умножение матриц друг на друга.

а11 а12               в11    в12        _

а21  а22               в21    в22        _

 


а11в11+ а12 в21    а11в12+а12в22         

а21 в11+ а22 в21    а21в12+а22в22

 

2 Правила вычисления определителей второго и третьего порядков.

 Определитель (детерминал) матрицы - число, которое ставится в соответствие этой квадратной матрице.

Порядок определителя - порядок соответствующей матрицы.

Определение определителя 2-го порядка.

а11 а12       _

а21 а22       _   а11 а22  -  а21 а12

 

а11 а22 - главная диагональ

а21 а12 - побочная диагональ

Определение определителя 3-го порядка.

а11 а12  а13

а21 а22 а23       = а11 а22  а33 + а21 а32  а13 +

а31 а32  а33    + а12 а23  а31 - а13 а22  а31 -

                   - а23 а32  а11  -  а21 а12  а33

 

3 Минором элемента аij определителя 3-го порядка называется определитель 2-го порядка, который получается путем вычеркивания в определителе третьего порядка i- той строки и j-ого столбца, т.е. строки и столбца, в котором находится данные элемент аij

аij занимает четное место, если сумма i+j  является четной и наоборот нечетное место, если сумма является нечетным числом.

Алгебраическим дополнением (Аij) элемента аij называется минор этого элемента взятый с "+" если аij  - четное и с "-" , если аij  - нечетное.

а11 а12  а13

а21 а22 а23       =  а11А11+а12А12+а13А13

а31 а32  а33

 

 

 

 

 

 

4. Системы линейных уравнений. Правило Крамера.

  а1х + в1у =с1        · в2    -для искл.

  а2х + в2у =с2        · (-в1) неизв. у

                      или

                              · а2     -для искл.

                                  · (-а1) неизв. х.

 

 

II сложим полученные уравнения, получим

х( а1в2 - а2в1) = с1в2 - с2в1

или (при исключении х)

у( а1в2 - а2в1) = а1с2 - а2с1

 

III По формуле определения определителя 2-го порядка, можно заменить коэфициенты уравнения.

          а1  в1

Д =                 - осн. опред-ль системы

               а2   в2      

          с1  в1

Дх =               

               с2   в2

                                                  доп. опред-ли

          а1  с1

Ду =                

               а2   с2

 

 

х= Дх¸Д          у= Ду¸Д

Основной определитель составляется из коэфициентов при неизвестных а Дх  и  Ду  получаются путем замены свободными членами соответственно первого и второго столбцов основного определителя.

5.Геометрическое истолкование линейной системы двух уравнений. Неопределенная и противоречивая системы.

   I                 

-      у системы 1 решение.

 

   II                                      

                   а1¸а2= в1¸в2 = k

                   c1¸с2 ¹ k

                    k (а1х + в1у) = k c1

                            пусть х0у0    - какое-нибудь              решение 2-го уравнения, подставляем:

                 

                  k(а1х0+в1у0)=kc1¹с2Þ

решение второго уравнеиня не удовлетворяет первое.

Противоречивая система   - не имеет решений.

______________________________________________________________________

а1/а2= в1/в2 = c1/с2= k

второе уравнение равно первому умноженному на какое-либо число или второе уравнение является следствием первого.

Неопределенной системой называется система, имеющая бесконечное количество значений.


6. Геометрическое истолкование линейной системы трех уравнений. Неопределенная и противоречивая системы.

В пространстве Oxyz каждому из уравнений соответствует плоскость. Рассмотрим все возможные случаи взаимного расположения этих плоскостей.

1.     Основной определитель Д¹0. По правилу Крамера находится единственное решение системы. Геометрически - это координаты единственной точки пересечения всех трех плоскостей.

2.     Д=0 Много возможностей.

А) все три плоскости совпадают.

х+2у+z=2        2-ое и 3-е мы полу-

3х+6у+3z =6   чаем из 1-го, умно-

2х+4у+2z=4    жая их на 3 и 2 соответственно.ÞСистема неопределена. Отбрасываем 2 и 3 ур. и из оставшегося вычисляем z=2-х-2у. Давая различные значения х и у, вычислим соответствующее значение z и получим решение системы Таких решений бесконечное множество.

Б) Две плоскости совпадают, а 3-я их пересевает по одной прямой (т.е. не сливается с ними)Þможно отбросить одно уравнение, оставив уравнения любых двух несливающихся плоскостей. Эта система явл. неопред: значение одной из неизвестных задается произвольно, две другие вычисляются из упомянутой системы. Аналогичный результат получается, когда 3 плоскоти пересекаются по одной прямой, попарно не совпадая.

Если 1 и 3 сложить, то получится 2. И наоборот, если из 3-1, то получим 2.

В) 2 или 3 плоскости ||

При этом когда 2 || , третья либо их пересекает, либо совпадает с одной из нихÞ система противоречива.

Г) плоскости попарно пересекаются. Линии пересечения ||  между собой (их 3)Þ система противоречива.

*** Если в однородной системе все миноры 2-го порядка =0, решение зависит от 2х параметров., или хотябы один отличен от нуля, то решение зависит от одного пораметра.


7. Сложение векторов, умножение вектора на скаляр. Проекция вектора на ось. Коллиниарность и комплиментарность векторов.

Вектором называется величина, которая характеризуется не только численным значением, но и направлением в пространстве. Модулем |ā| или длиной вектора а наз его числ. зн-ие. Если |ā|=0, вектор называют нулевым..

Проекция вектора на ось.

Пусть в пространстве даны вектор ĀВ и ось Ох. Опустим ^ на ось Ох и з точек А и В, т.е. спроектируем эти точки на ось Ох. Обозначим проекции через А'  и В'  Вектор A'B' называют компонентой вектора АВ по оси Ох. Проекцией вектора АВ на ось Ох называется длинна компоненты, взятая со знаком "+", если направление оси и компоненты совпадают, и со знаком "-" если направления противоположны.

Сложение и вычитание векторов

Сумма векторов ā и в определяется с помощью параллелограмма. Они выпускаются из одной точки и достраивается параллелограмм. Диагональ этого параллелограмма есть сумма векторов ā и в.

 Сумма векторов так же определяется по правилу многоугольника - к концу первого вектора  подставляют начало другого и соединяется начало первого и конец второго.

Разность векторов

с=а-в      в+с=а                      а              с

                                                       в

Умножение вектора на скаляр.

λ-число (скаляр)

ā - вектор λā=с

Произведением λā называется вектор, длинна которого равна |ā|·|λ|, а направление такое же, как и у вектора ā если λ>0, и противоположное, если λ<0.

Векторы называются коллиниарными, если они лежат на совпадающих прямых.

Если векторы ā и в коллиниарны (ā¹0; в¹0), то они пропорциональны, т.е. существует такое положительное или отрицательное число l, что а=lв.

Три вектора называются компланарными, если их можно уложить на одну плоскость.

9. Скалярное произведение и его свойства.

Скалярным произведением векторов а и в называют произведение их длин и косинуса угла между ними.

(а,b)=|a|×|b|×cos(a,b)

Свойства:

1.     Коммуникативность. (а,в)=(в,а)

2.     Дистрибутивность. (а+в)×(с)=(а×с)+(в×с)

3.     (lа,в)=(а,lв) - скалярный множитель можно выносить за знак скалярного произведения.

4.     Скалярное произведение (а,в) равно 0 тогда и только тогда, когда они ^ или один из них=0

Док-во: cos 90 = 0

8. Длина и направляющие косинусы вектора, заданного координатами. Орты. Радиус-вектор точки.

Векторы единичной длины, направленные по осям координат называют ортами и обозначают i (по оси Ох) j (по оси Оу). В 3х-мерном пространстве берется еще k (по оси z) Проекции  ах  и ау вектора а на оси х и у называют координатами вектора а. Углы вектора а с осями координат - a и b, тогда ах =|a|×cosa     - направляющие

          ау =|a|×cosb        косинусы

a,b - задают направление.

Величины cosa и cosb называются направляющимикосинусами вектора а. Зная координаты ах  и ау , можно вычислить модуль и направляющие косинусы: cosa= ах¸|a|, cosb= ау¸|a|

Очевидно, что |a| = Öах2 +ау2

Вектор ОМ, выходящий из (0;0) и оканчивающийся в т. М(х,у) называют радиус-вектором т.М. Координаты х и у т.М. так же являются координатами вектора r=ОМ. Поэтому r=хi+уj. Принято так же писать r ={х,у}

Длина вектора в 3х-мерном пространстве измеряется по формуле

|a|= Ö ах2 +ау2 +аz2

Векторное произведение и его свойства.

Результатом векторного умножения вектров является вектор. Векторное произведение векторов  а и в обозначается так: [а,в] или а´в.

Векторным произведением векторов а и в называется вектор с= [а,в], для кот.:

1.     длина численно равна площади параллелограмма, построенного на этих векторах, т.е. |c|= |a|×|b|×sin(ab)

2.     прямая, несущая вектор, ^ каждому из перемножаемых векторов,т.е. плоскости указанного параллелограмма

3.     направление на этой прямой выбирается так, что бы при взгляде с конца  вектора с поворот первого множителя а на наименьший угол до совмещения со вторым множителем в производился бы против часовой стрелки ( такая тройка векторов а,в,с, называется правой)

 Если а и в коллиниарны, то с=0 и вопрос о направлении с отпалдает.

Свойства:

1.     в´а = - а´в, т.е. векторное умножение некоммуникативно

2.     [lа,в]=[а,lв]=l[а,в]

3.     (а+в)´с=а´с+с´в, т.е. векторное умножение дистрибутивно

 

          i  j  k         ау аz             ах аz            ах ау

а´в=  ах ау аz  =i   ву вz    - j  вх вz  +k вх ву

         вх ву вz        

11. Смешанное произведение векторов. Его геометрический смысл.

Под смешанным произведением (векторно-скалярным) векторов а,в,с, понимают число авс=[а,в]×с

Выясним геометрический смысл смешанного произведения. Пусть S=[а,в]

|S|- площадь основания паралл-да

H -высота паралл-да

H= |c| ×|cosj|, где j - острый или тупой угол между векторами S и С.

авс=(s,c)=|s|×|c|×j= |s|×(±H)=±V - объем параллелепипеда.

Знак "+" получается, если тройка а,в,с правая и "-", если леваяÞАбсолютная величина смешанного произведения авс численно равна объему парал-да, построенного на векторах а,в,с.

Исходя из геом. Смысла, получаем необходимое и дополнительное условие компланарности векторов а,в,с, а именно авс=0

Координатная формула величины см. произведения векторов.

а={ах ау аz}, в={вх ву вz}, с={сх су сz}:

           ах ау аz

авс=   вх ву вz

                 сх су сz

12.Формулы расстояния между двумя точками и длина отрезка в заданном отношении.

Расстояние между точками М1  и М2вычисляется как модуль |М1 М2| вектора М1 М2.

М1 М2=| М1 М2|=√(х2 -х1)2 + (у2 -у1)2

Нахождение координат точки, делящей отрезок М1 М2 в заданном отношении М1N¸N М2 = p(число р задано)

Известно ,что || прямые K1М1 ;

NL  ;  K2М2 рассекают стороны угла M2AK2  на пропорциональные отрезки:

p=М1N¸N М2=K1L¸LK2 или х-х1¸х2-х1=pÞх=х1+pх2¸1+p;y=у1 +pу2¸1+p

в частности координаты середины отрезка (p=1)

x= х1 +х2¸2

у= у1 +у2¸2

13. прямая линия на плоскости: общее уравнение, уравнение с угловым коэфициентом, уравнение в отрезках.

Общее уравнение прямой линии - Ах+Ву+С=0, где коэфициенты А, В, С - какие-либо числа, переменные х, у называют текущимикоординатами точки, лежащей на прямой. Некотоорые коэфициенты могут равняться 0, однако хотя бы одно из чисел А, В должно быть отлично от 0, т.е. А2+В2¹0, иначе в уравнении исчезнут обе текущие координаты

у=kх+в - уравнение прямой с угловым коэфициентом

k=tga, где a - меньший из неотрицательных углов, образуемых прямой с положительным направлением оси Ох (0<a<p;a¹p/2)

                   геом. смысл коэфицтентов


уравнение в отрезках

заданы ненулевые отрезки а и в, отсекаемые прямой на осях координат. По условию точки (а;0) и (0;в) лежат на прямой. Воспользуемся уравнением

  х - х1      у - у1

  х2-х1    у2- у1

где х1=а    у1=0

      х2=0    у2=в

14. Уравнение прямой, проходящей через одну заданную точку, через 2 точки.

у - у1=k(х - х1)

уравнение прямой: у=kх+в

Если мы преобразуем первоначальное уравнение у - у1=k(х - х1), то получим у=kх+( у1-kх1) Оно удовлетворяет условия уравнения прямой : у=kх+в, т.к.

1.     его степень первая, а значит оно может быть прямой,

2.     прямая проходит через точку (х1; у1), т.к. координаты этой точки удовлетворяют уравнению : 0=0

3.     роль коэфициента в играет выражение у1-kх1

Прямая с уравнением у - у1=k(х - х1) проходит через 1 точку. Потребуем, что бы и вторая точка лежала на этой прямой, т.е. что бы выполнялось равенство у2 - у1=k(х2 - х1). Отсюда находим k= у2 - у1¸ х2 - х1 и подставим в уравнение:

у - у1  = у2 - у1¸ х2 - х1×(х - х1) или

х - х1¸х2 - х1= у - у1¸у2 - у1

15.Угол м/у прямыми на плоскости

Прямые: у=k1х +в1, у=k2х +в2

В тр-ке АВС сумма внутр. углов a1+b равна внешнему углу a2 поэтому b=a2-a1Очевидно, tga1= k1; tga2= k2.Проименяя формулу для tg разности 2х углов получим tgb=tg(a2-a1)= tga2-tga1¸1+ tga2×tga1

Окончательно имеем tgb= k2- k1¸1+k2××k1Вычислив тангенс можно найти и сам угол b.

16. Условия || и ^ прямых на плоскости.

 


Даны уравнения прямых с угловым коэф. у=k1х  и у=k2х +в2

Условия || прямых -это равенство угловых коэф. к1=к2     (1)

Условие (1) выполн. и для слившихся прямых. Формулу углового коэф. прямых (tga= k2- k1¸1+k2××k1) можно записать ввиде: ctga= 1+k2××k1¸k2- k1 (это в сслучае, если к1¹к2). Условие ^ прямых выражается равенством k2××k1= -1. Если к1=0 или к2=0, то одна из прямых || оси Ох, а вторая ей ^, имеет уравнение вида х=а.

Пусть прямые заданы общим уравнением. А1х+В1у+С1=0,  А2х+В2у+С2=0, Если В1=В2=0, то обе прямые параллельны оси Оу и между собой (их уравнения имеют вид х=а) Если В1=0, а В2¹0, то прямые^. В случае когда А2=0 (уравнение приводится к виду х=а, у=в)В случае В1¹0 и В2¹0можно выразить у в каждом уравнении. у= -А1х¸В1-С1¸В1;

У= - А2х¸В2-С2¸В2, тогда к1= -А1¸В1, а к2= - А2¸В2 и условие || А1¸В1= А2¸В2 или А1¸А2= В1¸В2.

С помощью равенства 1+к1×к2=0, 1+ А1¸В1× А2¸В2=0. Приходим к условию ^прямых А1×А2+В1×В2=0.

17. Эллипс

Эллипсом называется геометрическое место точек плоскости, сумма расстояний которых до двух данных точек, называемых фокусами, есть величина постоянная (большая расстояния между фокусами)

Уравнение элипса примет самый простой вид, если фокусы разместить на оси Ох слева от начала координат на равном от него расстоянии. F1 F2 - фокусы эллипса. Обозначим F1F2 = 2c тогда фокусы имеют координаты (-с,0) и (с,0). Расстояния о фокусов до текущей точки эллипса М обозначим r1 и r2. Их называют фокальными радиусами. Постоянную величину r1 + r2 обозначим 2а: r1 + r2 =2а. помещая точку М в точки  и А'  легко сообразить, что А'А = 2а. Отрезки AA' и ВВ' называются осями эллипса, а отрезки ОА и ОВ - полуосями эллипса. Точки А,А',В,В' называют вершинами эллипса. Пусть М(х,у)находится в точке В, тогда r1 = r2 =а. Из тр-ка ВОF2 ВО=ÖBF22-OF22 Обозначим ВО=в, тогда в=Öа2 - с2 . Через полуосиэллипса а и в уравнение запишится так:

Это уравнение называют каноническим уравнением эллипса. Окружность - частный случай эллипса, получается при а=в=R(R - радикс окружности). Чем больше отличаются друг от друга полуоси а и в, тем более сплюснутым будет эллипс. Степень сплюснутости эллипса принято измерять эксцентриситетом

Очевидно, 0£ɛ£1. При ɛ=0 имеем окружность, с увеличением ɛэллипс все больше отличается от окружности, становясь более выпуклым.

18. Гипербола

Гиперболой называется геом. место точек плоскости , для которых абсолютная величина разности расстояний до двух данный точек, называемых фокусами, есть величина посоянная, не равная 0 и меньшая расстояния между фокусами. Фокусы F1 и F2 снова расположим на оси Ох в точках (-с,0), (с,0). Отрезки F1М = r1 и F2М = r2 называют фокальными радиусами. По определению |r1 - r2 | есть величина постоянная. Обозначим ее 2а: |r1 - r2| =2а. Точки А и А' называют вершинами гиперболы. Легко понять, что АА' =2а. Действительно, для точки А r1 =АF1 а r2 =АF2. Очевидно, АF2=А'F1,поэтому r1 - r2 = АF1-АF2= АF1=А'F1 = А'A. С другой стороны r1 - r2 =2а. Отрезок АА' называют действительной осью гиперболы. Пусть в=Öс2-а2 Точки В и В' имеют координаты(0,в) и (0,-в). отрезок ВВ' называют мнимой осью гиперболы. Канонической уравнение гиперболы имеет вид:

 у гиперболы 2 ветви, при а=в гиперола называется равнобочной. Уравнения у=вх¸а и у=-вх¸а. Они называются асимптотами. Если точка удаляется по любой из ветвей гиперболы, то ее  расстояние до соответствующей асимптоты стремиться к 0. Для гиперболы эксцентриситет принимает зн-ия большие 1.

19. Парабола.

Параболой называется геометрическое место точек плоскости, равноудаленных от данной прямой, называемой директрисой, и от данной точки, не принадлежащей директрисе, называемой фокусом. Обозначим расстояние между фокусом и директрисой через р. Канонической уравнение параболы имеет вид:

у2=2рх и получается, если фокус F поместить в точку (р¸2, 0), а в качестве директрисы взять прямую х = - р¸2. Число р называют параметром параболы, точку (0,0) - ее вершиной.

20. Плоскость в пространстве: общее уравнение, геометрический смысл коэфициентов, уравнение плоскости., проходящей через заданную точку пространства.

Общее уравнение плоскости: Ах+Ву+Сz +D=0, в котором хотя бы один из коэффициентов А,В,С отличен от 0. Эти коэффициенты имеют опред. Геом. смысл

Зададим положение плоскости с помощью некоторой точки М0(х0,у0,z0) и ненулевого вектора N(А,В,С), перпендекулярного плоскости. По этим данным плоскость определяется однозначно. Пусть М(х,у,z) - текущая точка плоскости. Векторы N(А,В,С) и М0М(х-х0,у-у0,z-z0) ортогональны, поэтому их скалярное произведение равно )

А(х-х0)+В(у-у0)+С(z-z0)=0 (1)

После преобразований получаем уравнение:

Ах+Ву+Сz+D=0, где D = -Ах0-В0-Сz0

Следовательно, А,В,С - координаты вектора, перпендекулярного плоскости, заданной общим уравнением.

Множество плоскостей, описываемых уравнением (1), при фиксированной точке (х0,у0,z0) и переменных коэфициентах А,В,С называются связкой плоскостей. Когда среди условий, задающих искомую плоскость, значится ее точка М0(х0,у0,z0), можно начинать решение задачи с применения уравнения (1). Плоскость так же называют поверностью первого порядка.

23. Сфера,

Сфера. Уравнение сферы, центр которой находится в начале координат: х2+у2+z2=R2. Пусть теперь центр расположен в точке М0(х0,у0,z0)

Текущая точка М(х,у,z) сферы находится на расстоянии R от т. М.

Из равенства ММ02=R2 получаем: (х-х0)2+(у-у0)2+(z-z0)2=R2

Эллипсоид канонич. уравнение:

- а,в,с - полуоси эллипсоида. При а=в получается эллипсоид вращения. Такую форму имеет поверхность нашей планеты. При а=в=с эллипсоид превращается в сферы радиуса R=а

Параболоид вращения

В плоскости уОz  рассмотрим параболу у2=2рz. Поверхность, образованная вращением этой параболы вокруг оси Oz называется параболоидом вращения.

Пусть М(х,у,z) - произвольная точка поверхности, а М0 -  точка с той же аппликатой z, лежащая на параболе у2=2рz. Т.к. О'М=О' М0, то у2 для точки М0 можно заменить в уравнении на х2+у2 для точки М: х2+у2=2рz - уравнение параболоида вращения

21.     Уравнение прямой линии в пространстве.

Прямую линию в пространстве можно задать как линию пересечения двух непараллельных плоскостей А1х+В1у+С1 z +D1=0 и А2х+В2у+С2 z +D2=0. Рассмотрим случай, когда прямая задана своей точкой М0(х0,у0,z0) и направлением р=(l,m,n). Пусть М(х,у,z) - текущая точка прямой, векторы М0Ми р должны быть коллиниарны, поэтому:

х-х0¸l=у-у0¸m=z-z0¸n (1)

получили каноническое уравнение прямой. Разрешается одной и даже двум величинам в знаминателе обращаться в 0.В этом случае используют свойства пропорции.

х-х0¸l=у-у0¸m=z-z0¸n=t

приравнивая величине t каждое из отношений по отдельности, выразим х, у, z: х= х0+lt, y= у0+mt, z= z0+nt. Получили параметрические уравнения той же прямой.

 С помощью (1) можно написать уравнение прямой, проходящей через 2 заданные точки М1(х1,у1,z1) и М2(х2,у2,z2). Одну из этих точек, например М1 можно принять за М0, что даст возможность написать числители в (1). Осталось определить направление прямой. Для этого используют вектор М1М2(х1-х2,у1-у2,z1-z2) его координаты принимают за числа l,m,n В результате приходим к уравнениям:

х-х0¸ х1-х2 =у-у0¸у1-у2=z-z0¸ z1-z2

22.     Условия || и ^ прямых на плоскости.

Пусть даны две прямые х-х1¸l1=у-у1¸m1 =z-z1¸n1 и х-х2¸l2=у-у2¸m2 =z-z2¸n2 и две плоскости А1х+В1у+С1z+D1=0 и А2х+В2у+С2z +D2=0. Вспомним, что векторы р1={l1,m1,n1} и р2={l2,m2,n2} имеют направления прямых, а векторы N1{А1,В1,С1} и N2{А2,В2,С2}ортоганальны соответствующим плоскостям. Кроме того, воспользуемся условиями коллиниарности и ортоганальности двух векторов:

1.Условие параллельности прямых.

l1¸l2 =m1¸m2 =n1¸n2

2.     Условие параллельности плоскостей

А1¸А2 =В1¸В2 =С1¸С2

3.     условие перпендекулярности прямых(скалярное произведение и р1и р2=0)

l1+l2 =m1+m2 =n1+n2=0

4. условие перпендекулярности плоскостей

А1+А2 =В1+В2 =С1+С2=0

4.     условие перпендекулярности прямойи плоскости( коллиниарность векторов р1и N1)

l1¸А1 =m1¸В1 =n1¸С1

5.     Условие параллельности прямой и плоскости ( ортогонтальность векторов р1и N1)

l1+А1 =m1+В1 =n1+С1=0

 

 


Страницы: 1, 2, 3


на тему рефераты
НОВОСТИ на тему рефераты
на тему рефераты
ВХОД на тему рефераты
Логин:
Пароль:
регистрация
забыли пароль?

на тему рефераты    
на тему рефераты
ТЕГИ на тему рефераты

Рефераты бесплатно, реферат бесплатно, курсовые работы, реферат, доклады, рефераты, рефераты скачать, рефераты на тему, сочинения, курсовые, дипломы, научные работы и многое другое.


Copyright © 2012 г.
При использовании материалов - ссылка на сайт обязательна.