на тему рефераты
 
Главная | Карта сайта
на тему рефераты
РАЗДЕЛЫ

на тему рефераты
ПАРТНЕРЫ

на тему рефераты
АЛФАВИТ
... А Б В Г Д Е Ж З И К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я

на тему рефераты
ПОИСК
Введите фамилию автора:


Реферат: Шпора


Реферат: Шпора

Билет №1

  Пусть в обл. P плоскости XOY задана некоторая фун-ия z=f(x;y). Разобъём обл. P на n частичных обл. Рi , где i=1…n, возмём произвольную точку обл. (xI;hI) Î Рi , l - наиболь-ший диаметр чатичных обл.

   Построим частичную сумму – сумму Римена.

Определение:

Если существует конечный предел и не зависит от способа делений области на части и от выбора т. (xI;hI) в каждой из частичных областей, то такой предел принято называть двойным интегралом по обл. Р и пишут:

В случае, если фун-ия f > 0 мы приходим к геометрическому смыслу двойного интеграла: днойной интеграл – это объём некоторого цилиндрического тела, сверху ограниченного пов-тью z = (x;y), которая проектируется на плоскость XOY в обл. Р, а образующие параллельны OZ. Площадь обл. Р:

Двойной интеграл от f(x;y) имеет многие св-ва, аналогичные св-ам одномерного интеграла.

Св-ва двойного интеграла:

1.Необходимым условием сущ. Двойного интеграла явл. ограниченность ф-ции f в обл. Р, т.е если сущ. интеграл, то f(x;y) – ограниченная.

2.Всякая непрырывная ф-ция, заданная в обл. Р, интегри-руема.

3.Если ф-ция f(x;y) в обл. Р имеет разрывы на конечном числе непрырывных кривых, принадлежащих этой обл., то f интегрирума по обл. Р.

4.Сумма Дарбу:

       

Теорема: Для того, чтобы двойной интеграл от ограниченной обл. Р существовал, необходимо и достаточно, чтобы выполнялось равенство:

5.Аддетивность двойного интеграла, т.е., если задана обл.Р некоторой непрырывной кривой разбита на две обл-ти Р1иР2  не имеющих общих точек, то, если двойной интеграл по обл. Р существует, то существуют интегралы относительно по двум областям.

6.Линейность:

7.Если f(x;y) £ g(x;y) для "(x;y)ÎP и ф-ции f и g интегрируемы, то соответственно справедливо неравенство:

9.Если f(x;y) удовлетворяет нер-вам  m £ f(x;y) £ M, то справедливо следующее неравенство:

10.Для двойного интеграла имеет место теорема о среднем: если z = f(x;y) – ф-ция, заданая в обл. Р и такая, что во всех точках этой области выполняется нер-во   m £ f(x;y) £ M, где

то существует число m такое, что справедливо равенство:

В случае непрырывности ф-ции:

Вопрос №3 

Пусть в плоскости XOY задана плоскость Д, ограничен-ная следующими кривыми: y=j1(x) a £ x £ a – снизу;

y=j2(x) a £ x £ b – сверху;  x = a – слева; x = b – справа;

Тогда имеет место следующая теорема.

Теорема: Если функция f(x;y) задана в области Д такова, что существует двойной интеграл

для любого фиксированного xÎ [a ; b] существует одно- мерный интеграл

то тогда существует повторный интеграл

Доказательство:

Обозначим c=inf j1(x)  a £ x £ b; d=max j1(x)  a £ x £ b и рассмотрим прямоугольник R=[a,b;c,d]ÉД.  P=R\Д (раз- ность множеств). Построим вспомогательную функцию

Рассмотрим

Получаем следующее равенство:

Замечание: Пусть теперь область Д ограничена следующими линиями:

x=y1(y) c £ y £ d – слева; x=y2(y) c £ y £ d – справа;

x = c – сверху; x = d – снизу.  И пусть

Тогда аналогично предыдущему можно показать, что существует повторный интеграл и

Если же функция f(x;y) такова, что существует двойной интеграл, существует оба повторных, то одновременно имеют место формулы (1) и (2) и можно пользоваться любой из них.

Вопрос №5 

Формула Грина.

Теорема: Пусть задана область Д огран. след. кривыми:

y=j1(x)    a £ x £ b

y=j2(x)    a £ x £ b

x=a   ,   x=b, где ф-ции j1 и j2 непрер. на (a,b). Пусть в этой области задаётся функция P(x,y) – непрер. и имеющая непрер. частную производную: , тогда имеет место след. равенство:

Доказательство:

Рассмотрим двойной интеграл, стоящий справа в формуле(1). Т.к. под интегралом стоит непрер. функция, то такой двойной интеграл существует, также существует одномерный интеграл и его можно вычислить через повторный:

 Теорема: Пусть задана область Д огран.:

y=j1(x)    с £ x £ d

y=j2(x)    c £ x £ d

x=c   ,   x=d. И пусть в этой области задаётся функция Q(x,y) – непрер. и имеющая непрер. частную производную: , тогда имеет место след. равенство:

Cкладываем формулы (1) и (2) и получаем следующую формулу Грина для области Д:

D    P(x,y), Q(x,y) ,

Вычисление площадей через крив интеграл

Применим ф. Грина, т.е. выразим его через криволинейный интеграл по границе области.

1. Q = x  P = 0

2. Q = 0   P = -y

Суммируем  1 и 2 :     

Пример: Вычислить площадь эллипса

.

Сделаем замену переменных              0 £ t £ 2p

Вопрос №6 

Неприрывную кривую назыв. простой кривой (жордановой), если она не имеет точек самопересечения.

Областью называется всякое открытое связаное мн-во, т.е. такое мн-во всякая точка кот. явл. внутренней и любые две точки этого мн-ва можно соединить непрерывной кривой все точки кот. принадлежат данному мн-ву.

Область называется односвязной областью, если внутренность всякой замкнутой кривой содержит только точки данного мн-ва. 

Теорема 1. Пусть Д  ограниченная односвязная область пл-ти x и y, тогда для того чтобы криволинейный интеграл

был равен нулю по любой замкнутой кривой ГÌД, (где P(x,y)  и Q(x,y) непрерыв. И имеет непрерыв. Частные производ.  и  ) необходимо и достаточно чтобы вып. Такое равенство

=          (2)

f(x,y)eД.

Док-во:  Пусть во всей области Д вып. Равенство (2) и Г произвольная простая замкнутая кривая принадлеж. области Д. Обознач. Через обл. Д1 кот. огранич. Эта кривая Г. Применим к этой области формулу Грина:

Предположим, что интеграл равен нулю, а равенство (2) не вып. По крайней мере в одной точке (x0 ,y0) e Д

F(x0,y0)>0 , т.к. частные произв. Непрерывны в обл. Д, то ф-ция F(x,y) непрывна в этой обл. , а из этого вытекает , т.к. F(x0,y0)>0, то существует окрестность этой точки такая, что F(x,y)>0 для всех точек лежащих в нутри окр. gr кот. явл. Границей нашей окружности.

Множество точек леж. В этой окр. обознач. Д1 и применим к области Д1 ф-лу Грина:

это показывает, что не сущ. ни одной точки, где бы (2) не выполнялось. 

Вопрос №4

Пусть заданы 2 плоскости с введенными в прямоугольник декартовыми системами координат

 XOY и UOV. Пусть в плоскисти XOY задана область DV ограниченная кривой Г, а в плоскости  UOV задана область G ограниченная кривой L

Пусть функция отображает область G в области D, где т.(u,v)e G, а т.(x,y)eD.    

Будем предпологать , что функции x и y такие, что каждой точке области G соответствует точка области D и причем это соответствие такое, что различным точкам области D соответствуют различные области точки G. Причем всякая точка области D имеет единственный прообраз (u,v) в области G.

Тогда существует обратная функции  

 которая взаимноодназначно отображает область D в области G. Т.к. заданием двух точек U,V одназначно определяют т.(x,y) в области D, то числа U и V принято называть координатами точек в облати D, но уже криволинейными.

Будем предпологать, что функции x(U,V) и y(U,V) имеют непрерывные частные производные по своим переменным x’y и y’x, x’v и y’v, тогда определитель функции имеет вид:                            

Принято называть якобианом для функций x(U,V) и  y(U,V).

      Можно показать,что площадь области D задана в плоскости XOY может быть выражена в криволинейных координатах следующим образом:

 - прямолинейном интеграле.

                           в криволинейных координатах.

         Замена переменных. 

Теорема: Пусть Z=f(x) – непрерывная функция заданая в области D и область D является образом области G через посредства функций , где функции x(U,V) и y(U,V) непрерывные и имеют непрер. Частные производные, тогда справедлива след. Формула замены переменных в двойном интеграле:

Док-во: Разорвем обл.G непер. Кривыми на конечное число частичных областей. Тогда согласно формулам отображающим область G в обл. D. Эти кривые обл. G отображ. В некоторые кривые обл. D, т.е. обл. D будет разбита на конечное число (такое же как и обл. G) частичных подобластей.

Di – подобласти, i=1,2,…,n.

В каждой обл. Di выберем т.(x,y)eDi и составим интегральную сумму Римана для двойного интеграла от функции f обл. D.

Площадь обл. Di выразим в криволинейных координатах

xi=x(Ui,Vi)

yi=y(Ui,Vi)

И того, что интеграл от функции f(x,y)dxdy сущ., то $ lim sn(f) и этот lim не зависит от выбора точек в обл. Di, но тогда в качестве f(xi,yi) может быть взята точка    

Мы получаем интегральную сумму Римана для  интегр., что стоит справа формулы (1), поэтому переходя к lim в следующем равенстве:

 

получим ф-лу (1),  т.к.  суммы стремятся к соответствующему интегралу.

Вопрос №2

Теорема: Пусть z = f(x,y) – ограниченная функция, заданная на прямоугольнике R = [a,b;c,d], и существует двойной интеграл по этому прямоугольнику 

Если для " X [a,b] существует одномерный интеграл

то $ повторный интеграл

Доказательство:

Разобьем отрезки ab и cd отрезками a=x0<x1<…<xn=b, c=y0<y1<…<yn=d. Рассмотрим теперь частичный прямоугольник Rik=[xi,xi+1;yi,yi+1] mik=inf f(x,y)  Mik=sup f(x,y)

                             Rik                    Rik

На промежутке [xi;xi+1] возьмём точку x. Будем рас- сматривать точки, лежащие на прямой x = x.

Получаем следующее неравенство mik£ f(x;y)£ Mik yk£ y£ yk+1 Проинтегрируем его по отрезку [yk; yk+1]

Замечание: если же существует двойной интеграл и существует одномерный интеграл  

то существует повторный

Если же функция f(x;y) такова, что существует двойной интеграл по области R, существуют оба од- номерных  J(y) и Ί(x), то одновременно имеют место формулы (1) и (2)

Например: если f(x;y) непрерывна в области R, то, как известно двойной интеграл, и оба одномерных существуют, а значит, справедлива формула (3) и для вычисления двойного интеграла можно пользоваться одной из формул (1) или (2), а именно выбирая ту или иную, которая даёт более простое решение.

7.Независемость криволинейного интегр. от пути интегрирования. Теор.1 и 2.

Теорема 1. Пусть D – ограниченная одно-связанная область плоскости XOY тогда что бы  криволинейный интеграл -  был равен 0 по любой замкнутой простой кривой , где P(x,y)  и Q(x,y)  -  непрерывны и имеют непрерывные частные производные  , необходимо и достаточно что бы во всех точках области D было  (2).

Док-во

достаточность: Пусть во всех точках обл. D выполнено рав-во (2) и пусть Г  произвольная простая замкнутая кривая, принадлежащая области. Обозначим через D область кот-ю ограничивает эта кривая Г. Применим теперь к этой области ф-лу Грина.

  

Необходимость: Криволинейный интеграл в любой замкнутой простой кривой существует область D=0. Покажем, что во всех точках области D выполняется рав-во (2). (это доказуется методом от противного). Пусть интеграл  = нулю, а рав-во (2) не выполняется, по крайней мере, в одной точке   , т.е. . Пусть,  так что разность . Пусть  тогда . Т.к. частные производные  и  непрерывны в области D, то  непрерывна в этой области, а из непрерывности функций вытекает что ф-ция , то существует окрестность этой точки, принадлежащая области D,  так что везде в этой окрестности   для любой точки лежащей внутри кривой.

 кот-я является границей нашей окрестности  - множество чисел внутри . Применим к  ф-лу Грина: . Полученное противоречие показывает, что не существует не одной точки где бы равенство (2) не выполнялось.

Теорема 2 Пусть D есть односвязная область плоскости XOY в этой области заданы две непрерывные функции D(x,y) и Q(x,y) имеющие непрерывные частные производные  и  ; чтоб криволинейный интеграл не зависел от пути интегрирования . Необходимо и достаточно чтоб выполнялось равенство (2).

Док. Не обход. Пусть криволинейный интеграл не зависит от пути интегрирования, а зависит от начальной и конечной точки пути интегрирования.

Возьмём в области D произвольно простую замкнутую кривую Г. На этой кривой т. А и т. В

Т.к. по условию криво-ный интеграл не зависит от пути интегрирования, то  интеграл по кривым АmB=AnB

 В силу 1-й теоремы должно выполнятся рав-во (2).

Док. Достат. Пусть выполняется рав-во (2) . Покажем, что криволенейный интеграл не зависит от  пути  интегрирования :

1-й  случай. Берём две произвольные точки принадлежащие области D и соединяем эти  точки непрерывными кривыми  и , кот-е не имеют точек самопересечения.

Если эти кривые образуют простой замкнутый контур без самопересечения и т.к. выполняется рав-во (2), то интеграл поэтому замкнутому контуру обязан быть равен 0.   ,  т.е. интеграл не зависит от кривой.

2-й случай. Пусть  и  имеют конечное число точек самопересечения

Будем двигаться от А к C1 в результате получили контур  и . Аналогично Для всех остальных случаев.

3-й случай. Если кривые пересекаются на счётном множестве точек то интеграл по таким кривым тоже будут равны между собой ….счётное множество эквивалентное множеству натуральных чисел.

9.Параметрические ур-я поа-ти, касательная плос-ть, нормаль, направляющие косинусы нормали.

Пусть поверхность задана параметрическими уравнениями :x=x(U,V) ; y=y(U,V); z=z(U,V) и функции x,y,z непрерывны и имеют непрерывные частные произвольные. Рассмотрим матрицу

На поверхности берём точки U0(x0,y0,z0) которая является образом (U0,V0) . Можно показать, что в этом случае уравнение касательной к плоскости поверхности имеет вид А(x-x0)+B(y-y0)+C(z-z0)=0 .Уравнение нормали поверхности . Далее введём направляющую. Пусть поверхность задана параметрическими уравнениями и

l- угол образованный нормалью с направлением осью X

m- угол  образованный нормалью с направлением осью Y

n- угол  образованный нормалью с направлением осью Z,

cos l  cos m cos n - называют направляющими косинусами нормали. Для направляющих косинусов нормали имеет место формула:

, , . В знаменатели стоит двойной знак  ±  и всякий раз выбирают один из знаков в зависимости от направления нормали. В случае явного задания поверхности направляющие вычисляются  , .

                     Билет 12

                            Задача о вычислении  массы  пространств-го тела.

Пусть в трехмерном пространстве задано тело D, причем  в  точках этого тела определены некоторые массы и известна плотность распределения массы, кот. явл-ся  ф-цией трех переменных U=R(x,y,z).                        Разобьем это прост-ное тело некоторыми гладкими пов-ми на конечное число областей D1,  D2,…,Dn. В каждой области Di произвол. выберем некот. точку (x,h,e)Î Di. Плотность массы в этой точке – это R(xi,hi,ei).  Будем считать, что ф-ция R явл-ся непрерывной, а разбиение достат. мелким так, что значения ф-ции внутри области Di не слишком отличаються от значений ф-ции R в выбранной точке. Т.е. будем считать, что в области Di  плотность массы одна и та же и равна числу R(xi,hi,ei). Тогда очевидно масса, заключенная в обл. Di , будет равняться R(xi,hi,ei) * DV. Тогда приближенное значение массы для всей области равна  S R(xi,hi,ei)*DVi Пусть l - наибольший из диаметров Di – тых областей, а тогда масса , заключенная в области равна  m=lim(l®0) S R(xi,hi,ei) * DVi

Пусть теперь задано пространств. тело D. В точках этого тела определена ф-ция U=f(x,y,z). Разобьем это тело на конечное число Di –тых (i=1,2,3,…). В каждой области Di выберем произвол. точку (xi,yi,zi) и составим интегральную

sn=S ò(xi,yi,zi) * DVi Если сущ. предел и он конечный и он не зависит от способа деления обл. D на части и выбора точек (xi,yi,zi) , то этот предел называют тройным интегралом по обл.D от ф-ции f(x,y,z)                                                                            lim(l®0)sn=òòò f(x,y,z)dx dy dz Следовательно                     m=òòòR(x,y,z)dxdydz                                                            

Св-ва  тройного интеграла аналогично св-м двойного интеграла 1) Всякая интегрируемая в обл. D ф-ция ограничена в этой области.

2) Могут быть построены суммы Дарбу

    верх  St=S Mi  * DVi                 низ  st=S mi * DVi

3) Необходимо и достаточное условие сущ. интеграла

                      lim(l®0)( St-st)=0

4) Как и в случае двойного интеграла сущ. тройной интеграл от любой непрерывной ф-ции, заданной в обл. D. Однако тройной интеграл сущ. и в случае, когда ф-ция f(x,y,z) имеет разрывы 1-го рода на конечном числе пов-тей данного тела D.

5)Тройной интеграл обладает св-вами линейности и аддетивности

      òòòDfdx = òòòD1fdx + òòòD2 , где D=D1ÇD2

6)Если сущ. тройной интеграл от ф-ции  f, то сущ. интеграл по модулю

и существует  равенство

               ôòòòô£ òòòôfôdv

Если функция fв области D ограничена какими-то числами m £ f £ М , то для тройного интеграла справидливо  неравенство  

                          mVd £òòò ¦dv£M VD   

7) Имеет место теорема о среднем , т.е. если функция ¦(x,y,z) не-прерывная в области D , то справедливо равенство

                      òòò ¦dv = ¦ (X0 , Yo  , Z0)                     (X0 , Yo , Z0)ÎD

             Ввычесление тройного интеграла по параллепипеду .

1. Пусть  функция ¦(x , y ,z)  задана  на параллепипеде  R[ a ,b ; c , d; e, f].

  Обозначим  через Gи D прямоугольника D[ c , d; e, f] и [a,b;c,d] . Тогда если существует  тройной интеграл по параллепипеду от функции ¦(x,y,z) и существует для любого x из [a,b] двойной  интеграл по прямоугольнику D

      òò ¦(x,y,z)dydz то существует

òòò¦dv [N1] =òdxòò¦(x,y,z)dydz

Если для " zÎ[e,f] $ òò ¦(x,y,z)dxdy,то òòò ¦dv = òdxòò¦(x,y,z)dydz = òòdxdyò¦(x,y,z) . Если функция ¦(x,y,z) непрерывна в области D,т.е. на параллепипеде , то все указаные ранее интеграмы существует и имеет

место вся большая формула и в последнемравенстве можно менять местами в случае непрерывности функции.

2. Пусть ¦(x,y,z) задана в пространстве области G причем область G                                                                        сверху ограниченная  плоскостью  z=z2(x,y) снизу z=z1(x,y),a c боков ограничена цилиндрической поверхностью образующая которой ½½OZ. И пусть проекция этого тела на плоскость XOY есть некотокая область D .Тогда можно показать ,что тройной интеграл по пространственной области  G может быть вычеслен по такой формуле

Продолжение №12

Если теперь обл. D будет иметь следующее строение. Пусть обл. D, кот. явл. проэкцией тела на пл-ть XOY, ограничена следующими линиями: отрезками прямых x=a и x=b , и кривыми y=j1 (x) и  y=j2(x). Тогда тройной интеграл:                                                                                                                                                                                                                                                   

Вопрос №10

Пусть  в  пространстве  задана  поверхность Q, которая   является   гладкой  и  задана  явным  уравнением  z = f(x;y), где (x;y)ЄD.

D  является  проэкцией  поверхности  Q  на  плоскость  xoy. Будем считать f(x,y) – непрерывная   со   своими  частными  производными

P=òz / òx =òf / òx               q=òz / òy =òf / òy

Требуется  вычислить  площадь   S  заданной   поверхности. Разобьем  область  D  непрерывными  кривыми  на  конечное  число  частичных  областей  D1,D2,…,Dn. Возьмем  в  области  Di  т.(xi;yi)  и  построим  цилиндрическое  тело,  в  основании  которого  лежит  область  Di , а  образующие  параллельны  оси  oz. Это  цилиндрическое  тело  вырежет  на  нашей  поверхности  Q  некоторую  i-тую  площадку. Обозначим  через  Mi (xi;yi;zi)  точку  на  i-той  частичной  поверхности  такую, что  zi=f(xi;yi), т.е.  Mi(xi;yi;z (xi;yi)). Так как  частные производные  p,q-непрерывны,  то поверхность  является  гладкой  и  в  каждой  точке  этой поверхности  существует  касательная  плоскость. Проведем  теперь  касательную  плоскость  к  поверхности  в точке  Mi. Построенное  тело  на  обл.  Di  на  этой  плоскости  Т вырежит  некоторую  площадку Ti. Eе  площадь  STi   дает  некоторое  приближение  для  площади  куска  поверхности,  который  вырезается  этом  цилиндрическим  телом.  Аналогичным  образом  поступим  с  остальными  областями  D1,D2,…,Dn.  В  результате  мы  получим  некоторое  приближение  для  площади  всей  заданной  поверхности. Пусть

        n     

 d n=å STi   

      i=1   

 А  тогда  принято  считать, что  площадью  поверхности  является

                                n

     S=lim d n=lim    å STi ,   

        l®0    l®0  i=1 

где  l - наибольший  из  диаметров  площадей  Di.

Нетрудно  показать, что  такой  предел  будет  равен

    S=lim dn=òò (1/½cos n½)dx dy,

        l®0      D

где  n - угол, образованный  нормалью  к  поверхности  с  осью  oz.

Доказательство:

Через  ni  обозначим  угол,  который  образует  касательную  плоскость  с  плоскостью  xoy.  В точке Mi  проводим  нормаль  к  поверхности.  Получаем, что  угол, образованный  касательной  плоскостью  с  плоскостью  xoy  равен  углу,  образованному  нормалью  к  поверхности  с осью  oz.  Площадь Di  есть  проекция  плоскости  Ti , которая  лежит  на  касательной  плоскости.  А  тогда  SDi=STi*½cos ni ½.

А  тогда  получаем, что

       n        n                         n 

d n=å STi=å SDi / ïcos n i ï=å (1/ïcos niï)*SDi  .

      i=1     i=1                      i=1 

 Получили, что   данная  сумма   является   суммой   Римена   для   такого  двойного интеграла:

  òò (1/ïcos nï)dx dy.

 D

Получили , что  площадь  поверхности  Q , заданной  явным  уравнением ,  вычисляется  по  такой  формуле :

  SQ=òò (1/ïcos nï)dx dy.

        D

Если   поверхность  задана  явным  уравнением , то

  cos n=1/±Ö (1+p2+q2 n)=1/Ö(1+zx'2+zy'2 ).

В  случае  явного задания  поверхности

  SQ=òòÖ(1+zx'2+zy'2)dx dy =òòÖ(1+p2+q2)dx dy

        D                                 D

Если  теперь  поверхность  Q  задана  параметрическими  уравнениями     

     x=x(u,v)

     y=y(u,v)     (u,v)єG ,

     z=z(u,v)

  где  функции  x,y,z непрерывны  со  своими  частными  производными, то  в  этом  случае  площадь  поверхности  вычисляется  по  следующей  формуле

 6SQ=òòÖ(A2+B2+C2) du dv,

где  А,B,C-есть  раннее  введенные  функциональные  определители.

8.Касательная пл-ть к пов-ти и её ур-е в случае явного и не явного задания пов-ти.

1) не явное. Пусть поверхность задаётся не явным уравнением  F(x,y,z)=0. Эта функция непрерывна и имеет непрерывные частные производные.

Здесь рисунок.

Зафиксируем любую точку M0(x0,y0,z0). Рассмотрим кривую проходящую через эту точку. Пусть уравнение этой кривой будет  x=x(t) y=y(t) z=z(t) где . Предположим что эти функции непрерывны и имеют непрерывные частные производные по t . Пусть т. M0 соответствует значению параметра t=t0 x0=x(t0) y0=y(t0) z0=z(t0). Т.е. M0(x(t0),y(t0),z(t0))=M0(x0,y0,z0) , т.к. кривая Г лежит на пов-ти, то она удовлетворяет уравнению поверхности т.е. F(x(t),y(t),z(t)) 0, берём производную . Посмотрим это рав-во в т.M0 т.е. t=t0 получим ; Введём обозначение через  , а через , а так как  то  проведём через точку М0 любую кривую. из рассмотренных равенств заметим, что любые кривые на пов-ти, кот-е являются непрерывными , всегда будет выполнятся рав-во  , а это рав-во показывает что вектор  будет ортогонален к любому касательному вектору , кот-й проходит через эту точку М0, значить все касательные s лежат в одной плос-ти перпендикулярно к . Эту плос-ть состоящую из касательных векторов называют касательной плоскостью к поверхности в т. М0, а вектор  наз нормальным вектором плоскости в т. М0.  в случае не явно. Прямая проходящая через т. М0 и перпендикулярная к касательной плоскости поверхности называют нормалью поверхности. Но тогда ур-е прямой поверхности проходящую через т. М0:  .

2) явно. пусть пов-ть задаётся явным ур-ем z=f(x,y), где (x,y)D  f - ф-ция непрерывна и имеет непрерывные частные производные. ; ;

z-f(x,y)=0; F(x,y,z);

 ;;

;

; ;

 это ур-е пов-ти.

Страницы: 1, 2


на тему рефераты
НОВОСТИ на тему рефераты
на тему рефераты
ВХОД на тему рефераты
Логин:
Пароль:
регистрация
забыли пароль?

на тему рефераты    
на тему рефераты
ТЕГИ на тему рефераты

Рефераты бесплатно, реферат бесплатно, курсовые работы, реферат, доклады, рефераты, рефераты скачать, рефераты на тему, сочинения, курсовые, дипломы, научные работы и многое другое.


Copyright © 2012 г.
При использовании материалов - ссылка на сайт обязательна.