на тему рефераты
 
Главная | Карта сайта
на тему рефераты
РАЗДЕЛЫ

на тему рефераты
ПАРТНЕРЫ

на тему рефераты
АЛФАВИТ
... А Б В Г Д Е Ж З И К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я

на тему рефераты
ПОИСК
Введите фамилию автора:


Реферат: Теория вероятностей


Реферат: Теория вероятностей

Вопрос 1

События и явления. Все события и явления реального мира разделяются на закономерные (детерминированные) и случайные (вероятностные).

Случайным событием называется такое событие, изменить или предсказать которое в процессе случайного явления невозможно. Случайное событие - это результат (исход) конкретной единичной реализации случайного явления. Так, выпадение чисел 1-6 при бросании игральной кости - случайное явление. Выпадение числа 6 в единичном испытании - случайное событие. Если оно может задаваться, то это уже не игральная кость, а инструмент шулера. Типовое обозначение случайных событий - крупными буквами алфавита (например, событие А - выпадение 1 при бросании кости, событие В - выпадение 2 и т.д.).

Классификация случайных событий. Событие называют достоверным (и обозначают индексом W), если оно однозначно и предсказуемо. Выпадение суммы чисел больше 1 и меньше 13 при бросании двух костей - достоверное событие. Событие является невозможным (и обозначается индексом Æ), если в данном явлении оно полностью исключено. Сумма чисел, равная 1 или большая 12 при бросании двух костей - события невозможные. События равновозможны, если шансы на их появление равны. Появление чисел 1-6 для игральной кости равновозможно.

Два события называются совместными, если появление одного из них не влияет и не исключает появление другого. Совместные события могут реализоваться одновременно, как, например, появление какого-либо числа на одной кости ни коим образом не влияет на появление чисел на другой кости. События несовместны, если в одном явлении или при одном испытании они не могут реализоваться одновременно и появление одного из них исключает появление другого (попадание в цель и промах несовместны).

1. Вероятность любого случайного события А является неотрицательной величиной, значение которой заключено в интервале от 0 до 1. 0 £ Р(А) £ 1.

2. Вероятность достоверного события равна 1. Р(W) = 1.                                                   

В общем случае событие W представляет собой сумму полной группы возможных элементарных событий данного случайного явления: W=wi. Следовательно,  вероятность реализации хотя бы одного случайного события из полной группы возможных событий также равна 1, т.е. является событием достоверным.

Сумма противоположных событий тоже составляет полную группу событий и соответственно вероятность суммы противоположных событий равна 1:P(A+) = 1.                                      

Примером может служить бросание горсти монет. Орел или решка для каждой монеты – противоположные события. Сумма событий для горсти в целом равна 1 независимо от соотношения выпавших орлов и решек.

3. Вероятность невозможного события равна 0. Р(Æ) = 0.                                                         

Рис. 8.2.3.

            Пусть Ф - пустое пространство (не содержащее событий). Тогда W+Ф = W и пространство W не содержит событий, общих с пространством Ф (рис. 8.2.3). Отсюда следует, что Р(W+Ф) = Р(W) + Р(Ф) = Р(W), что выполняется при Р(Ф) = 0. Другими словами, если одно из событий обязательно должно происходить, то вероятность отсутствия событий должна быть равна нулю. Но при этом W является достоверным событием, а Ф = Æ (невозможное событие) и соответственно Р(Æ) = 0.

Вопрос 2

Диаграмма Вьенна-Эйлера

А) событие A

Б) Сложение – событие, кот состоит в том, что происходит хотя бы одно из событий A или B

В) произведение событий- А и B одновременно

Г) Дополнение – событие принадлежит к А, но не принадлежит к B

 Д) противоположное событию A событие В

Е) Несовместимые события – если они не могут произойти одноременно

Ж) События образуют полную группу, если хотя бы одно из них обязательно происходит в результате испытания

З) А влечет за собой В

 

Вопрос 3

Классическая формула вероятности

Если множество элементарных событий Ω={ω1,ω2,…ωN},конечно и все элементарные события равновозможны, то такая вероятностная схема носит название классической. В этом случае вероятность Р{А} наступления события А, состоящего из М элементарных событий, входящих в Ω, определяется как отношение числа М элементарных событий, благоприятствующих наступлению события А, к общему числу N элементарных событий. Эта формула носит название классической формулы вероятности: Р{А}= M/N.

В частности, согласно классической формуле вероятности:

Р{ωi }=1/N   (i=1,2,... , N)

Р{Ω}= N/N =1

P{Æ}=0/N =0

Комбинаторика, 1) то же, что математический комбинаторный анализ. 2) Раздел элементарной математики, связанный с изучением количества комбинаций, подчинённых тем или иным условиям, которые можно составить из заданного конечного множества объектов (безразлично, какой природы; это могут быть буквы, цифры, какие-либо предметы и т.п.). Число размещений. Пусть имеется n различных предметов. Сколькими способами можно выбрать из них т предметов (учитывая порядок, в котором выбираются предметы)? Число способов равно Anm = ? Anm называют числом размещений из n элементов по m. Число сочетаний. Пусть имеется n различных предметов. Сколькими способами можно выбрать из них т предметов (безразлично, в каком порядке выбираются предметы)? Число способов такого выбора равно  Cnm =  Cnm называют числом сочетаний из n элементов по m. Числа Cnm получаются как коэффициенты разложения n-й степени двучлена: (a+b) n=Cn0 an + Cn1 an-1b +Cn2an-2b2 ?+... + Cnn-1abn-1 + Cnn bn, и поэтому они называются также биномиальными коэффициентами. Основные соотношения для биномиальных коэффициентов: Cnm=Cnn-m, Cnm? + Cnm+1 = Cn+1m+1, Cn0 + Cn1 + Cn2 +...+ Cnn-1 + Cnn =2n, ? Cn0 - Cn1 + Cn2-...+ (-1) nCnn = 0.  Числа Anm, Pm и Cnm связаны соотношением:  Anm=Pm Cnm. Рассматриваются также размещения с повторением (т. е. всевозможные наборы из m предметов n различных видов, порядок в наборе существен) и сочетания с повторением (то же, но порядок в наборе не существен). Число размещений с повторением даётся формулой nm, число сочетаний с повторением - формулой Cmn+m-1.

Вопрос 4

При аксиоматическом построении вероятностей в каждом конкретном пространстве элементарных событий W выделяется s-поле событий S для каждого события AÎ S задается вероятность P{A} – числовая функция, определенная на s-поле событий S и удовлетворяющая следующим аксиомам.

Аксиома неотрицательности вероятности для всех A Î S: P{A}³ 0.

Аксиома нормированности вероятности: P{W}=1.

Аксиома адаптивности вероятности: для всех A,BÎS,таких, что AÇB¹Æ: P{AÈB}=P{A} +P{B}

Каждая определенная теоретико-вероятностная схема задается тройкой {W, S, P}, где W конкретное пространство элементарных событий, S - s-поле событий, выделенное на W, З – вероятность заданная на s-поле S. Тройка {W, S, P} называется вероятностным пространством

Пусть проводится конечное число n последовательных испытаний, в каждом из которых некоторое событие А может либо наступить (такую ситуацию назовём успехом),либо не наступить (такую ситуацию назовём неудаxей),причём эти испытания удовлетворяют следующим условиям:

1)каждое испытание случайно относительно события А, т.е. до проведения испытания нельзя сказать появится А или нет;

2)испытания проводятся в одинаковых с вероятностной точки зрения условиях, т.е. вероятность успеха в каждом отдельно взятом испытании равна р и не меняется от испытания к испытанию;

3)испытания независимы, т.е. исход любого из них никак не влияет на исходы других испытаний.

Такая последовательность испытаний называется схемой Бернулли или биноминальной схемой, а сами испытания- испытаниями Бернулли.

Ф-ла Бернулли: Рmn = Cmn* pm * q n-m = Cmn* pm * (1-p) n-m

Cmn= n!/ m!(n-m)!

Вопрос 5

Сложение вероятностей зависит от совместности и несовместности событий.

Несовместные события. Вероятность суммы двух несовместных событий А и В равна сумме вероятностей этих событий. Это вытекает из того, что множество С = А+В включает подмножества А и В, не имеющие общих точек, и Р(А+В) = Р(А)+Р(В) по определению вероятности на основе меры. По частотному определению вероятности в силу несовместности событий имеем:

P(A+B) =  = += P(A) + P(B),

где n и m - число случаев появления событий А и В соответственно при N испытаниях.

            Противоположные события также являются несовместными и образуют полную группу. Отсюда, с учетом: P() = 1 - Р(А).  

Рис. 8.2.4.

В общем случае для группы несовместных событий: P(A+B+...+N) = P(A) + P(B) + ... + P(N),

если все подмножества принадлежат одному множеству событий и не имеют общих точек (попарно несовместны). А если эти подмножества образуют полную группу событий, то с учетом: P(A) + P(B) + ... + P(N) = 1.                              (8.2.7)

Рис. 8.2.5.

Совместные события. Вероятность появления хотя бы одного из двух совместных событий равна сумме вероятностей этих событий без вероятности их совместного появления : P(A+B) = P(A) + P(B) - P(A×B).               

Разобьем события А и В каждое на два множества, не имеющие общих точек: А', A'' и B', B''. Во множества А'' и B'' выделим события, появляющиеся одновременно, и объединим эти множества в одно множество С. Для этих множеств действительны выражения:

С = A''×B'' º А'' º В'' º А×В,     P(C) = P(A'') = P(B'') = P(A×B).

P(A) = P(A')+P(A''),        P(A') = P(A)-P(A'') = P(A)-P(A×B).

P(B) = P(B')+P(B''),        P(B') = P(B)-P(B'') = P(B)-P(A×B).

Множества A', B' и С не имеют общих точек и можно записать:

P(A+B) = P(A'+B'+C) = P(A') + P(B') + P(С).

Подставляя в правую часть этого уравнения вышеприведенные выражения, приходим к выражению (8.2.8). Физическая сущность выражения достаточно очевидна: суммируются вероятности событий А и В и вычитаются вероятности совпадающих событий, которые при суммировании сосчитаны дважды.

В общем случае, для m различных событий А1, А2, ..., Аm:

    P(A1+...+ Am) =P(Ai) -P(Ai×Aj) +P(Ai×Aj×Ak) -...+(-1)m+1P(A1×A2× ... ×Am).    (8.2.9)

Рис. 8.2.6.

            На рис. 8.2.6 на примере трех пространств можно видеть причины появления в выражении (8.2.9) дополнительных сумм вероятностей совпадающих пространств и их знакопеременности. При суммировании вероятностей пространств А,В и С, имеющих общее пространство АВС, его вероятность суммируется трижды, а при вычитании вероятностей перекрывающихся подпространств АВ, АС и ВС трижды вычитается (т.е. обнуляется), и восстанавливается дополнительным суммированием с вероятностью пространства АВС.

Вопрос 6

1) Условная вероятность события А при условии В равна Р(А/B)=P(A*B)/P(B), Р(В)>0.

 2) Событие А не зависит от события В, если Р(А/B)=P(A). Независимость событий взаимна, т.е. если событие А не зависит от В, то событие В не зависит от А. В самом деле при Р(А)>0 имеем Р(B/A)=P(A*B)/P(A)=P(A/B)*P(B)/P(A)=P(A)*P(B)/P(A)=P(B). Вытекает следующая формула умножения вероятностей: Р(А*В)=Р(А)*Р(В/A). Для независимых событий вероятность произведения событий равна произведению их вероятностей: Р(А*В)=Р(А)*Р(В). 3) События А1,А2,…,Аn образуют полную группу событий, если они попарно несовместны и вместе образуют достоверное событие, т.е. Аi*Aj=0, i не=j, U по i от 1 до n Аi=омега.

Вероятность совместного появления двух событий равна произведению вероятности одного из них на условную вероятность другого, вычисленную в предположении, что первое событие уже наступило: Р(АВ)=Р(А)*Ра(В). В частности для независимых событий Р(АВ)=Р(А)*Р(В), т.е. вероятность совместного появления двух независимых событий равна произведению вероятностей этих событий.

Вопрос 7

            Формула полной вероятности. Систему событий А1, А2, ...,AN называют конечным разбиением (или просто разбиением), если они попарно несовместны, а их сумма образует полное пространство событий: А1 + А2 + ... + АN = W.    

Если события Аi образуют разбиение пространства событий и все P(Ai) > 0, то для любого события В имеет место формула полной вероятности: P(B) =P(Ak)×P(B/Ak),                                    

что непосредственно следует из (8.2.14) для попарно несовместных событий:

B = B×W = BA1+BA2+...BAN.

P(B) = P(BA1)+P(BA2)+... +P(BAN) = P(A1)P(B/A1)+P(A2)P(B/A2)+...+P(AN)P(B/AN).

Вопрос 8

 

Вопрос 9

 

Вопрос 10

Случайной величиной называется числовая величина, которая в результате опыта может принять какое-либо значение из некоторого множества, причем заранее, до проведения опыта, невозможно сказать, какое именно значение она примет. Случайные величины обозначают заглавными латинскими буквами X, Y, Z,..., а их возможные значения — строчными латинскими буквами х, у, z. Случайная величина называется дискретной, если множество ее значений конечно или счетно, и непрерывной в противном случае. Законом распределения случайной величины называется любое со­отношение, связывающее возможные значения этой случайной ве­личины и соответствующие им вероятности. Закон распределения дискретной случайной величины задается чаще всего не функцией распределения, а рядом распределения, т.е, таблицей

Х

x1

x2

...

xn

...

P

p1

p1

...

pn

...

В которой  x1, x2, ..., xn, ... - расположенные по возрастанию значения дискретной случайной величины X, а р1, р2, ..., рп, ... — отвечающие этим значениям вероятности: pi = Р{Х = хi), i= 1, 2, ..., п, ... . Число столбцов  в этой таблице может быть конечным (если соответствующая случайная величина принимает конечное число значений) или бесконечныи. Очевидно,S pi= 1.

Многоугольником распределения дискретной случайной величины X называется ломаная, соединяющая точки {xi; pi), расположенные в Порядке возрастания хi.

Вопрос 11

 Функцией распределения случайной величины Х называется функция FX(x)= P{X<x}, xÎR

Под {X<x}понимается событие, состоящее в том, что случайная величина Х принимает значение меньшее, чем число х. Если известно, о какой случайной величине идёт речь, то индекс, обозначающий эту случайную величину, опускается: F(x) º FX(x).

Как числовая функция от числового аргумента х, функция распределения F(x) произвольной случайной величины Х обладает следующими свойствами:

1)для любого xÎR: 0£ F(x) £ 1

2) F(-¥) = limx®¥ F(x) = 0 ; F(+¥) = limx®¥ F(x) = 1;

3) F(x)-неубывающая функция, т.е.для любых х1,х2 ÎR таких, что х1<х2: F(x1) £ F(x2);

4)для любого xÎR: F(x)= F(x-0)= lim z<x,z®xF(z).

Вопрос 12

Мат. Ожиданием Д.С.В. называют сумму произведений  всех ее возможных значений на их вероятности: М(Х)=х1р1+х2р2+…+хnpn. Если Д.С.В. принимает счетное множество возможных значений, то М(Х)=сумма по i от 1 до бесконечности xipi, причем мат. ожидание существует, если ряд в правой части равенства сходится абсолютно. Мат. ожидание обладает следующими свойствами: 1) Мат. ожидание постоянной величины равно самой постоянной: М(С)=С. 2) Постоянный множитель можно выносить за знак мат. ожидания: М (СХ)=СМ (Х). 3) Мат. ожидание произведения взаимно независимых С.В. равно произведению мат. ожиданий сомножителей: М (Х1,Х2…Хn)=M(X1)*M(X2)…M(Xn). 4) Мат. ожидание суммы С.В. равно сумме мат. ожиданий слагаемых: М (Х1+Х2+Х3+…+Хn)=M(X1)+M(X2)+M(X3)+…+M(Xn).

 Вопрос13

 Дисперсией случайной величины х называется число: DX= M(X-MX)2 ,равное математическому ожиданию квадрата отклонения случайной величины от своего математического ожидания. Для вычисления дисперсии иногда проще использовать формулу: DX=M(X2)-(MX)2 . Для дискретных св:

DX=∑(xi – MX)2 pi;

DX=xi2pi – (MX) 2.

Свойства дисперсии дискретной случайной величины: (X,Y-независимые д.св, с- неслучайная постоянная ÎR)

Dc=0;

D(cX)=c2DX;

D(X+Y)= DX + DY

Вопрос 14

Биномиальным называют закон распределения Д.С.В.  Х - числа появлений события в n независимых испытаниях, в каждом из которых вероятность появления события равна р, вер-ть возможного значения Х=k (числа k появлений события) вычисляют по формуле Бернулли: Pn (k)=Cn^k* p^k *q^(n-k)

Вопрос 15

 Случайная величина Х наз.распределённой по геометрическому закону с параметром р (рÎ[0;1]), если она принимает значения 1,2,3… с вероятностями Р{Х=х}= р(1-р)х-1  (х = 1,2,3…).

Случайную величину Х можно интерпритировать как число испытаний Бернулли, которые придётся произвести до первого успеха, если успех в единичном испытании может произойти с вероятностью р.

Математическое ожидание случайной величины, имеющей геометрическое распределение: МХ=1/p.

Дисперсия: DX=1-p/p2

Вопрос 16

 Если число испытаний велико, а вероятность P повяления события в каждом испытнаии очень мала, то используют приближенную формулу

Pn(k)=l^k*e^(-l/k)

Где k – число появлений события в n независимых испытаниях, l = np (среднее число появлений события в n независимых испытаниях), и говорят, что случайная величина распределена по закону Пуассона.

Вопрос  17

С.В. Х называется непрерывной, если существует неотрицательная функция рх(х) такая, что при любых х функцию распределения Fx(x) можно представить в виде: Fx(x)=интеграл от –бесконечности до х px(y)dy. Рассматривают только такие С.В., для которых рх(х) непрерывна всюду, кроме, может быть, конечного числа точек. Плотностью распределения вероятностей непрерывной С.В. называют первую производную от функции распределения: f(x)=F’(x). Вероятность того, что Н.С.В. Х примет значение, принадлежащее интервалу (а,b), определяется равенством P(a<X<b)=интервал  от а до b f(x)dx. Зная плотность распределения можно найти функцию распределения F(x)=интеграл от –бесконечности до х f(x)dx. Плотность распределения обладает следующими свойствами: 1) П.Р. неотрицательна, т.е. f(x)>=0. 2) Несобственный интеграл от плотности распределения в пределах от –бесконечности до бесконечности равен единице: интеграл от –бесконечности до бесконечности f(x)dx=1.

Вопрос 18

Мат. ожидание Н.С.В. Х, возможные значения которой принадлежат всей оси ОХ, определяется равенством: М(Х)=интеграл от –бесконечности до бесконечности хf(x)dx, где f(x) - плотность распределения С.В. Х. Предполагается, что интеграл сходится абсолютно. В частности, если все возможные значения принадлежат интервалу (а,b), то М(Х)=интеграл от а до b xf(x)dx. Все свойства мат. ожидания, указаны выше, для Д.С.В. Они сохраняются и для Н.С.В.

Страницы: 1, 2


на тему рефераты
НОВОСТИ на тему рефераты
на тему рефераты
ВХОД на тему рефераты
Логин:
Пароль:
регистрация
забыли пароль?

на тему рефераты    
на тему рефераты
ТЕГИ на тему рефераты

Рефераты бесплатно, реферат бесплатно, курсовые работы, реферат, доклады, рефераты, рефераты скачать, рефераты на тему, сочинения, курсовые, дипломы, научные работы и многое другое.


Copyright © 2012 г.
При использовании материалов - ссылка на сайт обязательна.