на тему рефераты
 
Главная | Карта сайта
на тему рефераты
РАЗДЕЛЫ

на тему рефераты
ПАРТНЕРЫ

на тему рефераты
АЛФАВИТ
... А Б В Г Д Е Ж З И К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я

на тему рефераты
ПОИСК
Введите фамилию автора:


Реферат: Теория вероятности


Такой подход позволяет рассматривать практически любое пространство элементарных событий, как дихотомное (то есть состоит из противоположных событий).

Допустим, необходимо определить вероятность появления события Е ровно k раз в n независимых испытаниях. В этом случае событие противоположное Е произойдет n-k раз. Отобрать k-элементов из n можно различными способами, каждый из которых несовместное событие, появление которого это результат игры случая.

В математике доказано, что число различных комбинаций из n элементов по k определяется по формуле:

, ! это произведение натурального ряда чисел, каждое из которых больше предыдущего на 1 (начиная с 1).

В соответствии с теоремой умножения вероятностей вероятность появления одной из возможных комбинаций определяется по формуле:

Формула, которая определяет вероятность появления события Е k-раз в n-независимых испытаниях, называется формулой Бернулли. А схема отбора из дихотомной совокупности схемой Бернулли (или схемой возвращаемого шара или схемой повторного отбора).

Пример:  Для обслуживания покупателей супермаркета в час пик без очередей должно работать не менее 6 контролеров-кассиров из 8. Вероятность отсутствия одного из работников составляет 0,1. Найти вероятность работы расчетно-кассового узла без очередей.

Поскольку нас устраивает работа 6, 7, 8 кассовых кабин, то вероятность появления одного из этих несовместных событий будет определяться по формуле сложения вероятностей. Каждая из этих вероятностей может определяться по формуле Бернулли.

Таким образом, в 96 случаях из 100 очередей не будет.

Если при фиксированной численности n-повторного отбора из дихотомной совокупности изменять величину k, то полученное распределение вероятности будет называться биномиальным. Поскольку его ординаты представляют собой элементы разложения бинома .

Число наступления событий в n-независимых испытаниях называется наивероятнейшим, если этому числу соответствует наибольшая вероятность.

При этом если k смешанное число, то в результате выбирается ближайшее к этому смешанному числу, но меньше его, целое число.

В примере с кассирами  .

Математическое ожидание М(k) числа появления событий Е в n-независимых испытаниях равно произведению числа испытаний на вероятность появления события в каждом испытании.

Если перейти от абсолютного числа раз появления события к плотностям распределения вероятностей, то будет равно p.

Дисперсия биномиального распределения  - по плотности.

График биномиального распределения зависит от соотношения p и q. Если p равно q и равно 0,5, то распределение симметрично, в противном случае (p≠q) наблюдается асимметрия или скошенность полигона.

Показатель асимметрии биномиального распределения определяется по формуле:

Если , то  высота биномиального распределения соответствует высоте кривой нормального распределения. Доказано, что с увеличением числа испытаний значения , а биномиальное распределение стремится к нормальному распределению.

9. Вероятность редких событий. Формула Пуассона.

Применение формулы Бернулли сопряжено с расчетами трех факториалов, что при достаточно больших значениях n, k, n-q,  осложняет задачу. Поэтому статистики математики разработали ряд примерных методов, заменяющих формулу Бернулли при решении некоторых частных и общих задач.

Пример: Определение вероятности появления редких событий , k-раз, в n независимых  испытаниях. Причем подразумевается нефиксированное, а бесконечно большое количество испытаний ( ). При этом . Такая вероятность определяется по формуле Пуассона (альтернативные независимые события).

 - математическое ожидание;

Формула Пуассона выводится из формулы Бернулли и после ряда преобразований выглядит следующим образом , где k – количество раз, которое произойдет редкое событие.

Эта формула применяется в прикладных разработках, в теории массового обслуживания (теории очередей), которая используется для расчета оптимального числа точек обслуживания, числа бензоколонок, числа рабочих мест операционистов в банке (такое число, чтобы не было очередей).

Кроме того, формула Пуассона применяется в ситуациях, когда не требуется высокая точность расчетов, а вероятность события p не велика.

10. Локальная теорема де Муавра-Лапласа.

В 1730 г. формула для приближения расчета значений для случая, когда p=q=0,5 предложил французский математик де Муавр.

Позднее в 1783 г. Лаплас  обобщил результаты, полученные де Муавром, в своей теореме. Если вероятность p появления события Е в каждом испытании постоянна и отлична от 0 и 1, то вероятность  появления события Е в n испытаниях равно k раз приближенно равна значению функции:

Созданы специальные таблицы значений функции  в зависимости от величины t. t – стандартизированное значение.

Пример: Найти вероятность того, что 80 из 1000 приобретут мужскую обувь, если вероятность покупки обуви  p=0,11 (по данным из наблюдений за предыдущий период).

1)

Поскольку в функции  использована четная степень t – функция положительна, то есть .

Таким образом, только в 404 случаях из 1 млн. ровно 80 из 1000 посетителей приобретут мужскую обувь.

2)

Таким образом, в 242 случаях из 10000 ровно 120 из 1000 посетителей приобретут мужскую обувь.

11. Интегральная формула Лапласа.

Локальная теорема Лапласа имеет важное значение, однако ее практическое значение ограничено. На практике важно знать вероятность того, что событие Е произойдет число раз, заданное в определенных пределах.

Пример: Вероятность приобретения покупателями мужской обуви от 80 до 120 человек из 1000.

, то есть, равна сумме вероятностей несовместных событий покупки 1000 посетителей конкретного числа пар обуви в пределах от 80 до 120 пар обуви.

Каждое из слагаемых определяется по локальной формуле Лапласа. Высокая трудоемкость задачи очевидна, поэтому рациональным способом решения задачи является интегрирование локальной функции Лапласа.

Если вероятность p появления событий Е в каждом испытании постоянна и отлична от 0 и 1 , то

, при этом

Интегрированная функция описывает распределение вероятности полной группы событий, поэтому ее общая площадь в пределах изменения t от  до  равна 1.

Поскольку функция асимптотически приближается к оси абсцисс в пределах изменения t  от  до -5, а так же от +5 до  считается, что единице равна площадь кривой в пределах ординат .

Значения функции даны в приложении 3, они указаны в пределах от –t до +t.

Пример: от 80 до 120

Таким образом, в 84 случаях из 100.

Складывая и вычитая площади, определенные по таблицам всегда можно получить необходимый результат.

12. Зависимые события. Гипергеометрическое распределение.

Для вывода функции гипергеометрического распределения проводятся испытания (выборка) по схеме невозвращающегося шара. В этом случае вероятность появления события Е k-раз в n зависимых испытаниях подвергается влиянию не только числа отбираемых единиц n, но и численности всей генеральной совокупности N.

Если p доля единиц генеральной совокупности, обладающих изучаемым признаком, а q – доля необладающих этим признаком, то вероятность появления события Е k раз n зависимых испытаний определяется по формуле:

, где  - число сочетаний из pN=M элементов генеральной совокупности, обладающих изучаемым признаком по k;  - число сочетаний из qN=N-M единиц, необладающих изучаемым признаком n-k единиц;  - число исходов, удовлетворяющих и неудовлетворяющих данному испытанию.

Математическое ожидание гипергеометрического распределения не зависит от объема генеральной совокупности и как в биномиальном распределении определяется по формуле:

, где  - корректирует дисперсию при бесповторном отборе в зависимости от численности выборки и генеральной совокупности.

Если численность генеральной совокупности достаточно велика, то , в этом случае , то , то есть, зная параметры биномиального распределения всегда можно рассчитать параметры гипергеометрического.

13. Нормальное распределение.

Нормальное распределение – это наиболее важный вид распределения в статистике.

Нормально распределяются значения признака под воздействием множества различных причин, которые практически не взаимосвязаны друг с другом и влияние каждой из которых сравнительно мало, по сравнению с действием всех остальных факторов.

Нормальное распределение отражает вариацию значений признака у единиц однородной совокупности. Подобное распределение наблюдается преимущественно в естественно-научных испытаниях (измерение роста, веса).

В социально-экономических явлениях нормального распределения данные встречаются редко. Здесь всегда присутствуют причины существенным образом влияющие на уровень изучаемого признака (результат управленческого воздействия).

Тем не менее, гипотеза о нормальном распределении исходных данных лежит в основе методологии анализа взаимосвязей выборочного метода и многих других статистических методов.

При достаточно большом числе испытаний нормальная кривая служит пределом, к которому стремятся многие виды распределения, в том числе биномиальное и гипергеометрическое.

Нормальное распределение выражается функцией вида:

Данная функция характеризует плотность нормального распределения вероятности, ее математическое ожидание , а показатель степени – стандартное значение отклонений эмпирических данных от среднеарифметических.

Масштабирование данных кривой по оси x осуществляется величинами среднеквадратического отклонения . Так как показатель степени функции возведет в четную степень, функция положительна, кривая симметрична относительно средней, то есть показатель асимметрии равен . Показатель эксцесса кривой нормального распределения так же равен 0.

Значения параметров  и  влияют на форму и положение графика на координатной плоскости. С изменением  при  кривая скользит вдоль оси x. С изменением  при  чем больше  тем более плосковершинной становится нормальная кривая. Нормальная кривая имеет точки перегиба с координатами . Площадь, ограниченная функцией и ординатами, проведенными из точек с координатами:

  составляет 0,6827 площади всей кривой;

 - 0,9545 площади всей кривой;

 - 0,9973 площади всей кривой.

14. Сравнительная оценка параметров эмпирического и нормального распределений. Критерий Пирсона.

Нормальный характер распределения свидетельствует о количественной однородности статистических данных и об отсутствии каких-либо причин существенным образом определяющих вариацию изучаемого явления.

Поэтому статистический анализ нередко начинается с проверки того, как фактически (эмпирически) данные ложатся на идеальную теоретическую кривую или апроксимируются (то есть выражение данных какой-либо кривой) сравнение эмпирических и теоретических данных. Производится путем оценки гипотезы нормального характера распределения. Вероятностные статистические предположения выдвигаются в виде нулевой  гипотезы. Отклонения данных эмпирических от нормальных носят случайный характер. Оценку нулевой гипотезы в данном случае осуществляют графическим методом или путем расчета специальных обобщающих показателей сходства, называемых критериями согласия.

Независимо от выбранного метода генеральные ряды распределения преобразуются в дискретные и стандартизируются.

Пример: Известно, что среднемесячная заработная плата всех рабочих =1402,42 руб., среднеквадратическое отклонение =338,58 руб.

Данные распределения среднемесячной заработной платы.

Средне-месячная заработная плата

Число раб-ков,  (эмпир.)

(теор.)

До 700 16 600 -2,37 -2,81 0,0241 12,93 3,07 9,41 0,73
700,1-900 56 800 -1,78 -1,58 0,0819 44,04 11,96 142,95 3,25
900,1-1100 89 1000 -1,19 -0,71 0,1969 105,82 -16,82 282,90 2,67
1100,1-1300 172 1200 -0,60 -0,18 0,3337 179,35 -7,35 54,05 0,30
1300,1-1500 244 1400 -0,01 0,00 0,3989 214,44 29,56 873,70 4,07
1500,1-1700 163 1600 0,58 -0,17 0,3365 180,87 -17,87 319,44 1,77
1700,1-1900 93 1800 1,17 -0,69 0,2002 107,62 -14,62 213,80 1,99
1900,1-2100 64 2000 1,76 -1,56 0,0840 45,17 18,83 354,42 7,85
Свыше 2100,1 13 2200 2,36 -2,77 0,0249 13,38 -0,38 0,14 0,01
Итого 910 22,63

В связи с тем, что табличные значения рассчитаны для непрерывно изменяющегося признака с дисперсией равной 1, необходимо скорректировать полученные частости на фактическую величину интервала и среднеквадратическое отклонение.

, где  величина интервала.  Так как все интервалы равны , тогда .

Графики не позволяют определить насколько существенны отклонения, поэтому более точным считается способ расчета критериев согласия. Наиболее известный из них:

В соответствии с формулой, чем сильнее совпадение кривых, тем меньше величина . При отсутствии отклонений , но даже при небольших отклонениях величина  зависит от числа слагаемых (то есть от числа групп). Если >0, то необходима его вероятностная оценка (стр. 368).

 - число степеней свободы и заданная вероятность несущественности отклонений эмпирических данных и теоретических. r – число групп, k -  число параметров, которые нельзя изменить.

Поскольку фактическое значение  (22,63) гораздо больше табличного (5,348) даже для вероятности 0,5, гипотеза о случайном характере отклонений эмпирических данных от теоретических отклоняется.


Страницы: 1, 2


на тему рефераты
НОВОСТИ на тему рефераты
на тему рефераты
ВХОД на тему рефераты
Логин:
Пароль:
регистрация
забыли пароль?

на тему рефераты    
на тему рефераты
ТЕГИ на тему рефераты

Рефераты бесплатно, реферат бесплатно, курсовые работы, реферат, доклады, рефераты, рефераты скачать, рефераты на тему, сочинения, курсовые, дипломы, научные работы и многое другое.


Copyright © 2012 г.
При использовании материалов - ссылка на сайт обязательна.