на тему рефераты
 
Главная | Карта сайта
на тему рефераты
РАЗДЕЛЫ

на тему рефераты
ПАРТНЕРЫ

на тему рефераты
АЛФАВИТ
... А Б В Г Д Е Ж З И К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я

на тему рефераты
ПОИСК
Введите фамилию автора:


Реферат: Теория принятий решений


х1+ х2 = 1 - х3  £  v(1,2) и х1 > у1 , х2> у2 .

Поскольку по свойству дополнительности  для 0-1 редуцированной формы v(1,2) = v (1,2,3) - v(3) = 1 - 0 = 1, то неравенство x1 + x2 = 1 - x3  £ 1 всегда выполняется. Вторая группа неравенств из определения доминирования дележей и х1 > у1 , х2> у2  и условие ее выполнения лучше всего иллюстрируются графически.

Так как рассматривается 0-1 редуцированная форма, то 

х1+ х2+ х3 = y1+ y2+ y3 = 1 и любой дележ в такой задаче можно представить как точку симплекса, задаваемую барицентрическими координатами.

Симплекс - простейший выпуклый многогранник  данного числа измерений n. При n = 3 cимплекс - произвольный, в том числе неправильный тетраэдр. При n = 2  симплекс - произвольный треугольник, при n = 1  - отрезок, при n = 0 - одна точка, таким образом, n-мерный симплекс имеет n+1 вершину.

Если в пространстве Rm  дана система декартовых координат х1, х2, ... хm в которой вершина еi ( i=0: n) имеет координаты х1(i), х2(i), ... хm(i), то симплекс с вершинами е0, е1, е2,...еn состоит из всех точек пространства, координаты которых имеют вид:

хk = a0хk (0) + a1хk (1) + ...+ anхk(n),  k = 1: m, a ³ 0 - произвольные, å ai= 1.

Барицентрические координаты точки М на плоскости по отношению к трем базисным (не лежащим на одной плоскости) точкам А1, А2, А3   этой плоскости - такие три числа m1, m2, m3         (å mi= 1), что точка М представляет собой центр тяжести системы из трех материальных точек с массами m1, m2, m3 , расположенными в точках А1, А2, А3   ( или вершинах симплекса).

В нашем примере роль масс играют полезности, которые получают игроки по рассматриваемым дележам. Если х1 > у1, то точка  х должна быть расположена ближе к вершине 1, чем точка у. Все точки, соответствующие стороне симплекса 32 имеют нулевую барицентрическую координату х1, а все точки линии, параллельной ребру 32  - одинаковую барицентричекую координату х1 . Поэтому “расстоянием” между любой точкой симплекса и какой-либо его вершиной является длина перпендикуляра, опущенного из этой вершины на прямую, проходящую через рассматриваемую точку параллельно стороне, противоположной вершине.

Для определения всех точек симплекса, соответствующих дележам, доминируемым дележом  х по коалиции {1,2}, необходимо  провести через х прямые, параллельные сторонам симплекса 2,3 и 1,3. Заштрихованная область и дает множество доминируемых дележей. Пунктир означает, что внутренние границы области в нее не входят. Точно так же можно построить все области доминирования дележом  х по коалициям {1,2}, {2,3}  и {1,3}. Незаштрихованные области - соответствуют дележам у1, доминирующим дележ х1.

Для того, чтобы дележи не доминировали друг друга, соответствующие им точки должны лежать на прямой, параллельной одной из сторон треугольника (ab, cd и ef на рисунке для дележа  х).

Для игры с непостоянной суммой могут иметь место и неэфективные дележи, поэтому неравенство хi + xj  £ v(i,j) , хi+ хj+ хl = 1, может быть нарушено. Так как это равносильно 1- хl  £ v(i,j) , то условия доминирования принимают вид:

хi > уi ,  хj > уj , хl ³ 1 - v(i,j).


5. С - ядро (core).

 Наличие доминирующих и доминируемых дележей в кооперативной игре приводит к появлению коалиций, заинтересованных в тех или иных дележах. Следовательно, если найдется дележ, не доминируемый никаким другим дележом, то он, скорее всего, не вызовет возражений у игроков и не приведет к образованию коалиций с "собственными интересами".

Множество дележей в кооперативной игре, каждый из которых не доминируется какими - либо другими дележами, называется С-ядром этой игры.

 Теорема. Для того, чтобы дележ х принадлежал С-ядру кооперативной игры с характеристической функцией v , необходимо и достаточно, чтобы для  любой коалиции К выполнялось неравенство :

                å iÎK  хi  ³  v(K), ( т.е. все дележи в С-ядре абсолютно неэффективны ).

 

 Таким образом, не доминируются те дележи, в которых для любой коалиции сумма платежей больше, чем эта коалиция может гарантированно выиграть.  Это означает, что любая коалиция должна согласиться на такой дележ, так как при этом игроки получают больше, чем могут выиграть самостоятельно (получить такой выигрыш "в одиночку" члены коалиции не могут).

Принадлежность дележа х к С-ядру означает только то, что дележ х не доминируется другими дележами, но это не значит, что он доминирует другие дележи. Из определения доминирования и теоремы следует, что дележ х , принадлежащий С-ядру, сам не может доминировать другие дележи ни по какой коалиции. Таким образом, множество дележей, образующий С-ядро, свойством внешней устойчивости не обладает.

Теорема. Во всякой существенной игре с постоянной суммой С-ядро пусто.

 

 Качественно это можно обьяснить так: если дележ входит в С-ядро, то любая коалиция должна получить больше, чем она может выиграть самостоятельно. Но поскольку сумма выигышей постоянна, это можно сделать только за счет других коалиций, откуда обязательно возникнет отношение доминирования дележей (уже по другим причинам). Таким образом, любое ограничение доходов приведет к пустому С-ядру.

 

Пример. Рассмотрим общую кооперативную игру трех лиц в 0-1 редуцированной форме. Имеем:  v(Æ ) = v(1) = v(2) = v (3) = 0;   v (1,2,3) = 1;  v(1,2) = C3; v (2,3) = C1;  V (1,3) = C2;  0 £ Ci £ 1, i = 1:3.

Из определения свойств дележей, принадлежащих С-ядру, имеем:

x1 + x2 ³ C3 ; x1 + x2 ³ C3; x1 + x2 ³ C3; а поскольку для любого дележа справедливо правило групповой рациональности, x1 + x2 + x3 = 1, то условие принадлежности дележа к С-ядру имеет окончательный вид в форме:

1 - x3 ³ C3 ; 1 - x2 ³ C2; 1 - x1 ³ C1;  или x3  £ 1- C3 ;  x2  £ 1- C2 ;  x1  £ 1- C1.

 Сложим почленно все неравенства:  x1 + x2 + x3  £ 3 - (C1 + C2 + C3). Имеем:  C1 + C2 + C3 £ 2. Это условие является необходимым для существования непустого С-ядра.

 

 

6. Решение по Нейману - Моргенштерну.

Дележи, входящие в С-ядро, не доминируются другими дележами, но сами доминировать другие не могут, поэтому выбор дележа из С-ядра - решение трудно оспоримое, но далеко не самое лучшее.

 Разумеется, идеальным было бы указание такого дележа, который не только не доминировался какими-либо другими дележами, но и сам бы доминировал любой другой дележ. Приемлемые результаты можно получить путем некоторого расширения класса дележей подобно введению смешанных стратегий для решения антагонистических игр.

 Такое расширение было произведено Дж. фон Нейманом и О.Моргенштерном путем использования понятий внутренней и внешней устойчивости.

 

Под внутренней устойчивостью множества дележей, образующих решение,  понимается не доминирование дележей внутри решения. Под внешней устойчивостью понимается свойство доминирования хотя-бы одним из дележей, входящих в решение, любого дележа не входящего в решение.

Решением по Нейману-Моргенштерну ( Н-М решением ) кооперативной игры называется такое множество R дележей, что: 

1. Никакие два дележа из R не доминируют друг друга (внутренняя  устойчивость);

2. Каким бы ни был дележ S R найдется дележ r R такой, что r dom s (внешняя устойчивость).

 

Теорема  связи между С-ядром и Н-М решением: Если в кооперативной игре существует С-ядро и Н-М решение R, то С Ì R.

 

Теорема. Если некоторое Н-М решение кооперативной игры <I,v> состоит из единственного дележа х, то характеристическая функция v является  несущественной. (Н-М решение существенной кооперативной игры не может состоять только из одного дележа).

 

 Недостатки Н-М решения:

 

 1. Известны примеры кооперативных игр, которые не имеют Н-М решения. Более того, в настоящее время не известны какие-либо критерии, позволяющие судить о наличии у игры Н-М решения. Тем самым заложенный в Н-М решении принцип оптимальности не является универсально реализуемым и область его реализуемости пока остается неопределенной.

 

 2. Кооперативные игры, если имеют Н-М решение, то, как правило, более одного. Поэтому принцип оптимальности, приводящий к Н-М решению не является полным: он не в состоянии указать игрокам единственной системы норм распределения выигрыша.

 

 3. Решения существенных кооперативных игр состоят из более чем из одного дележа. Таким образом даже выбор какого-либо конкретного Н-М решения еще не определяет выигрыша каждого из игроков.

 

 Эти недостатки не "пороки", которые следовало бы исправлять, а недостатки, которые хотелось бы восполнить. Это отражает положение дел в действительности: большинство экономических и социальных проблем допускает множественные решения, и эти решения не всегда поддаются непосредственному сравнению по их предпочтительности.

 

 

7. Вектор Шепли.

До сих пор были рассмотрены решения игр, отвечающие принципам оптимальности в смысле выгодности и устойчивости ( maxmin в чистых или смешанных стратегиях ) или только устойчивости ( C-ядро и Н-М решение в кооперативных играх ). Рассмотрим решения, оптимальные в смысле справедливости. 

Задача состоит в том, чтобы найти вектор распределения общего выигрыша между участниками игры:  Ф(v) = ( Ф1(v), Ф2(v),... Фn(v))

 При этом необходимо, чтобы Ф(v) был дележом в условиях кооперативной игры, то есть отвечал бы требованиям игдивидуальной и групповой рациональности.

 Предлагаемое решение носит аксиоматический характер, то есть выводится формальным образом из некоторой полной и непротиворечивой системы аксиом. Эта система включает в себя: аксиому эффективности, аксиому симметрии и аксиому агрегации.

 

 Аксиома эффективности: распределение выигрыша носителя игры ( N ) происходит только между игроками, входящими в носитель. Иными словами, все приращение выигрыша, достигаемое только за счет обьединения в коалицию (эффект супераддитивности), распределяется только между теми, кто его обеспечил. С другой стороны, все болваны получают только то, что они выиграли бы в одиночку или в составе коалиции.

 Формально эти условия выражаеюся в том, что å Фi(v) = v (N), iÎN, и   Фj(v) = v(j), jÎ I\N.

Аксиома симметрии: игроки, входящие в игру симметрично, должны получать одинаковый доход. Здесь симметричность понимается как одинаковое влияние на характеристическую функцию. Это утверждение равносильно тому, что доход игрока не зависит от его номера или "имени".

 Формально Фj(v) = Фpj(v), где p - целое положительное число.

 

Аксиома агрегации: если игрок принимает участие в двух играх с характеристическими функциями v’ и v”, то причитающаяся ему доля:

 Ф(v’ + v”) = Ф(v’) + Ф(v”), если множества игроков в обоих играх совпадают.

Совокупность аксиом является непротиворечивой и полной: для всякой характеристической функции v вектор Ф(v) существует и является единственным (вектор Шепли). Непротиворечивость обеспечивает существование, а полнота его единственность.

Теорема. Для любой характеристической функции v над I={1,2,...n} компоненты  вектора Шепли определяются по формуле

Пример. Для кооперативной игры трех лиц в 0-1 редуцированной форме  эта формула имеет вид: Фi(v) = 1/6 (2 - 2Ci + Cj + Cf).

Следовательно, координаты вектора Шепли:

Ф1(v) = 1/6 (2 - 2C1 + C2 + C3),   где  C1  = v(2,3);

Ф2(v) = 1/6 (2 - 2C2 + C1 + C3),   где  C2  = v(1,3);

Ф3(v) = 1/6 (2 - 2C3 + C1 + C2),   где  C3  = v(1,2).

Для того, чтобы вектор Шепли принадлежал к С-ядру необходимо и достаточно, чтобы выполнялось неравенство:  4Ci + Cj + Cf  £ 4 для всех i, j,f.

8. Примеры классических кооперативных игр.

Задача "Джаз-оркестр".

Условие. Владелец клуба в Париже обещает 1000 $ певцу (S), пианисту (P) и ударнику (D) за совместную игру в клубе. Выступление дуэта певца и пианиста он расценивает в 800 $, ударника и пианиста - в 650 $, а одного пианиста в 300 $. Другие дуэты и солисты не рассматриваются , а присутствие пианиста владелец считает обязательным.

Дуэт певец - ударник зарабатывает 500 $ за вечер в одной удобно расположеной станции метро, певец зарабатывает в среднем 200 $ за вечер в открытом кафе. Ударник один ничего не может заработать.

Стоит ли музыкантам соглашаться на приглашение владельца клуба  и как поделить общий заработок ?

Решение. Обозначим S, P,D - 1 игрок, 2 игрок и 3 игрок соответственно.

Найдем 0-1 редуцированную форму исходной игры:

Коалиция

123

SPD

12

SP

13

SD

23

PD

1

S

2

P

3

D

v

1000 800 500 650 200 300 0

v(0-1)

1 0,6 0,6 0,7 0 0 0

Условие эффективности дележей

Условие неэффективности

(принадлежности к С-ядру)

Для редуцированной формы

x1  ³ 1 - v(2,3) = 0,3

x1  £ 0,3

x2  ³ 1 - v(1,3) = 0,4

x2  £ 0,4

x3  ³ 1 - v(1,2) = 0,4

x3  £ 0,4

Для нередуцированной формы

xS + xP  £ 800 ,  xD  ³ 200

xS + xP ³ 800, xD £ 200

xS + xD  £ 500 , xP  ³ 500

xS + xD ³ 500, xP £ 500

xD + xP  £ 650 , xS  ³ 350

xD + xP ³ 650, xS £ 350

Найдем вектор Шепли для этой игры. В нередуцированной форме n=3, коалиции могут быть из одного, двух и трех игроков.

ФS = (3-3)!2! (1000 -650)/ 3! + 1!1![(800 - 300) + (500 - 0)] / 3! + 2!0! 200 / 3! = 350;

ФP  = 475;

ФD  = 175.

Нетрудно видеть, что, ФS + ФP + ФD = 1000, то есть условие коллективной  рациональности выполняется. С другой стороны:

ФS = 350 >  v(S) = 200;

ФP = 475 >  v(P) = 300;

ФD = 175 >  v(D) = 0, то есть условия индивидуальной рациональности так же выполняются. Таким образом, в данном случае вектор Шепли является дележом, кроме того, он входит в С-ядро :

 xD = ФD=175 < 200, xP = ФP=475 < 500, xS = ФS=350 = 350 (выплата певцу оказалась максимальной).

Для 0-1 редуцированной формы:

Ф1(v) = 1/6 (2 - 2C1 + C2 + C3) = (2 - 1,4 + 1,2)/ 6 = 0,3;

Ф2(v) = 1/6 (2 - 2C2 + C1 + C3) = (2 - 1,2 + 1,3)/ 6 = 0,35;

Ф3(v) = 1/6 (2 - 2C3 + C1 + C2) = (2 - 1,2 + 1,3)/ 6 = 0,35.

Вектор Шепли Ф(v) = ( 0,3; 0,35; 0,35) входит в С-ядро игры:

4Ci + Cj + Cf = 2,8 + 0,6 + 0,6 = 4 ( £ 4), то есть условие соблюдается на границе для первого игрока. Для других двух игроков:

4Ci + Cj + Cf   = 2,4 + 0,7 + 0,6 = 3,7 < 4, то есть условие вхождения в С-ядро тоже соблюдается.

Ответ. Музыкантам выгодно предложение владельца клуба, так как они заработают за этот вечер не менее, чем обычно. Общий заработок в 1000 $ они должны поделить следующим образом: певцу 350 $, пианисту 435 $, ударнику 175 $.

Глава . Принятие решений в условиях частичной неопределенности.

Элементы теории статистических решений.

Предметом рассмотрения данного раздела служат статистические модели  приянятия решений, трактуемые как статистические игры или игры с природой при использовании дополнительной статистической информации о ее стратегиях. Характерная черта статистической игры - возможность получения информации в результате некоторого статистического эксперимента для оценки распределения вероятностей стратегий природы. Исследование механизма случайного выбора  стратегии природой позволяет принять оптимальное решение, которое будет наилучшей стратегией в игре с неантагонистическим противником человека - природой.

В рассмотренных разделах теории игр предполагалось, что оба противника  (или больше двух) активно противодействуют друг другу, что оба они достаточно умны, чтобы искать и найти свою оптимальную стратегию, и осторожны, чтобы не  отступать от нее. Такое положение дает возможность предсказывать поведение  игроков. Неопределенность была лишь в выборе противником конкретной чистой  стратегии в каждой отдельной партии.

Но возможен случай, когда неопределенность в игре вызвана не сознательным противодейтсвием противника, а незнанием условий, в которых будет приниматься решение, случайных обстоятельств. Такие игры называются "играми с природой".

Игра человека с природой тоже отражает конфликтную ситуацию, возникающую при столкновении интересов в выборе решения. Но "стихийным силам природы" нельзя приписать разумные действия, направленные против человека  и тем более какой-либо "злой умысел". Таким образом, корректнее говорить о конфликтной ситуации, вызванной столкновением интересов человека и неопределенностью действий природы.

Действия природы могут как наносить ущерб, так и приносить прибыль.  Поведение природы можно оценить статистическими методами, определить присущие ей закономерности. В зависимости от степени знания этих закономерностей, определяющих поведение природы, различаются игры с природой в условиях определенности и игры с природой в условиях неопределенности.

В первых поведение природы известно полностью (заданы вероятностями).  Во вторых - действия природы не известны, или изучены частично.

К явлениям природы, влияющим на результат решения относят не только погодные и сезонные явления (дождь, засуху, урожай, неурожай), но и проявление любых, не зависящих от нас обстоятельств: например, задержки на транспорте.

Поиском решений в таких ситуациях и занимается теория статистических решений.

Человек, играя с природой, стремиться максимизировать свой выигрыш, поэтому, если он осторожный игрок ( а теория игр рассматривает именно таких игроков), он должен при выборе своей стратегии руководствоваться тем, что неизвестные или известные ему закономерные действия природы приведут к наименее благоприятным последствиям. Именно поэтому такие игры можно рассматривать как игры двух лиц с нулевой суммой, которые были уже нами рассмотрены.

Формализация задачи происходит следующим образом: у активного игрока (человека) возможные действия по прежнему называются стратегиями, а возможные действия пассивного игрока (природы) - состояниями или условиями природы.

В качестве первого игрока всегда выступает человек, поэтому в матрице записывается его выигрыш. Так как нас интересует оптимальная стратегия человека и его гарантированный выигрыш, то в игру достаточно определить максиминную стратегию первого игрока и нижнюю цену игры. Определение  верхней цены игры имеет смысл, если даная игра повторяется многократно и оптимальная стратегия может быть смешанной.

 

 

1. Игры с природой в условиях определенности.

 

Если у человека, выступающего против природы, есть статистические данные о закономерностях в конкретных проявлениях природы, то задача легко может быть решена вероятностными методами.

Таким образом, если вероятности состояний природы известны и не  изменяются со временем ( стационарны), определяется решение, которое дает наибольшее математическое ожидание выигрыша против известной стратегии природы - состояния или условия.

 

Пример. Фирма купила станок за 100 ден.ед.  Для его ремонта можно купить специальное оборудование за 50 ед. или обойтись старым оборудованием. Если станок выходит из строя, его ремонт с помощью спецобору дования обходится в 10 ед., без спецоборудавания - в 40 ед. Известно, что в течение срока эксплуатации станок выходит из строя не более трех раз: вероятность того, что станок не сломается - 0,3;  сломается 1 раз - 0,4; сломается 2 раза - 0,2;  сломается 3 раза  - 0,1. Требуется определить целесообразность приобретения специализированного ремонтного оборудования.

Формализация. Первый игрок имеет две чистые стратегии: покупать и не покупать специализированное ремонтное оборудование. У природы - второго игрока - четыре состояния: станок не выйдет из строя, выйдет один раз, сломается два раза и три раза. Функция выигрыша - затраты фирмы на покупку и ремонт станка, задается платежной матрицей:

 

Выход станка из строя

 

Ремонтное оборудование ни разу 1 раз 2 раза 3 раза
не купить -100 -140 -180 -220
купить -150 -160 -170 -180

Решение. Рассмотрим сначала эту задачу как антагонистическую игру.

В матрице методом минимакса находим седловую точку: (2,4), таким образом,  x* = ( 0, 1 ),  y* = ( 0, 0, 0, 1 ), v* = - 180 ден.ед.

Ответ: нужно купить специализированное оборудование.

Однако в играх с природой положение коренным образом меняется: уже в условии заложена устойчивая смешанная стратегия природы: у = ( 0,3; 0,4; 0,2; 0,1) и мы знаем, что именно этой стратегии придерживается природа.

Если же человек - первый игрок - будет продолжать играть оптимально, то его выигрыш составит  v(x*) = - 150 0,3 - 160 0,4 - 170 0,2 - 180 0,1 = - 161 , а если применит первую, неоптимальную стратегию, то математическое ожидание его выигрыша составит  v(x') = - 100  0,3 - 140  0,4 - 180 0,2 - 220  0,1 = - 144 .

Таким образом, первому игроку выгодно играть неоптимально !

Ответ: не покупать специализированное оборудование.

Существенное различие между значениями v(x*) и v(x') обьясняется тем, что смешанная стратегия природы неоптимальна и она, "отклоняясь" от своей оптимальной стратегии "недополучает" 36 ден.единиц выигрыша.

2. Игры с природой в условиях неопределенности.

Если распределение вероятностей будущих состояний природы не известно, вся информация о природе сводится к перечню ее возможных состояний.

Пример. Игра "Поставщик".

Выпуск продукции фирмы существенно зависит от скоропортящегося материала, например, молока или ягод, поставляемого партиями стоимостью 100ед. Если поставка не прибывает в срок, фирма теряет 400 ед. от недовыпуска продукции. Фирма может послать к поставщику свой транспорт (расходы 50 ед.), однако опыт показывает, что в половине случаев транспорт возвращается ни с чем. Можно увеличить вероятность получения материала до 80%, если предварительно послать своего  представителя, но расходы увеличатся еще на 50 ед. Существует возможность приобретать более дорогой (на 50%) материал-заменитель у другого, вполне надежного поставщика, однако, кроме расходов на транспорт (50 ед.) возможны дополнительные издержки хранения материала в размере 30 ед., если его  количество на складе превысит допустимую норму, равную одной партии.

Какой стратегии должен придерживаться завод в сложившейся ситуации?

Формализация. У природы два состояния: поставщик надежный и поставщик ненадежный. У фирмы - четыре стратегии: 1) не осуществлять никаких дополнительных действий, 2) послать к поставщику свой транстпорт, 3) послать к поставщику представителя и транстпорт, 4) купить и привезти материал-заменитель от другого поставщика.

Составим таблицу расчетов:

Затраты и убытки фирмы-изготовителя
Ситуация Стоимость материала Недовыпуск продукции Транспорт Команди-ровочные расходы Издержки хранения

Общая сумма

1 1 - 100 0 0 0 0

- 100

1 2 0 - 400 0 0 0

- 400

2 1 - 100 0 - 50 0 0

- 150

2 2 - 50 - 200 - 50 0 0

- 300

3 1 - 100 0 - 50 - 50 0

- 200

3 2 - 80 - 80 - 50 - 50 0

- 260

4 1 - 250 0 - 50 0 - 30

- 330

4 2 - 150 0 - 50 0 0

- 200

Решение. На основе полученных результатов вычислений можно составить платежную матрицу:

min max

- 100

- 400

- 400

- 150

- 300

- 300

- 200

- 260

- 260 - 260

- 330

- 200

- 330

Ответ. Нужно придерживаться третьей стратегии и затраты не превысят 260 ед., если послать к поставщику представителя и транстпорт.

1. Рассмотренный способ поиска оптимального решения называется критерием Вальда (Максиминный критерий принятия решения). Выбирается решение, гарантирующее получение выигрыша не меньше, чем maxmin:

vW = maxi minj aij = -260 ед.

Применяя этот критерий мы представляем на месте природы активного и злонамеренного противника. Это пессимистичный подход.

2. Максимаксный критерий. Самый благоприятный случай:

vM = maximaxj aij = -100 ед.

Если фирма ничего не предпримет, то потратит не больше 100 единиц. Это критерий абсолютного оптимизма.

3. Критерий пессимизма-оптимизма Гурвица.

Представляется логичным, что при выборе решения вместо двух крайностей в оценке ситуации придерживаться некоторой промежуточной позиции, учитывающей возможность как наихудшего, так и наилучшего, благоприятного поведения природы. Такой компромиссный вариант и был предложен Гурвицем. Согласно этому подходу для каждого решения необходимо определить линейную комбинацию min и max выигрыша и взять ту стратегию, для которой эта величина окажется наибольшей:

vH = maxi [a maxi aij + (1-a) minj aij ], где a - “степень оптимизма” , 0£ a £1.

При  a = 0 критерий Гурвица тождественен критерию Вальда, а при a =1  совпадает с максиминным решением.

На выбор значения степени оптимизма оказывает влияние мера ответственности: чем серьезнее последствия ошибочных решений, тем больше желание принимающего решение застраховаться, то есть степень оптимизма a ближе к нулю.

Влияние степени оптимизма на выбор решения в задаче “Поставщик”.

Степень оптимизма
Решение 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9

А1

1 стратегия -370 -340 -310 -280 -250 -220 -190* -160* -130*

А2

2 стратегия -285 -270 -255 -240 -225* -210* -195 -180 -165

А3

3 стратегия -254* -248* -242* -236* -230 -224 -218 -212 -206

А4

4 стратегия -317 -304 -281 -278 -265 -252 -239 -226 -213

Величина vH  для каждого значения  a отмечена*. При   a £ 4/9 критерий Гурвица рекомендует в задаче “Поставщик” решение А3, при 4/9£ a £2/3 - решение А2. В остальных случаях А1. А4 не выгодно во всех случаях.

4. Критерий Сэвиджа (критерий минимакса риска).

На практике, выбирая одно из возможных решений, часто останавливаются на том, осуществление которого приведет к наименее тяжелым последствиям, если выбор окажется ошибочным. Этот подход к выбору решения математически был сформулирован американским статистиком Сэвиджем в 1954 году и получил название принципа Сэвиджа. Он особенно удобен для экономических задач и часто применяется для выбора решений в играх человека с природой.

По принципу Сэвиджа каждое решение характеризуется величиной дополнительных потерь, которые возникают при реализации этого решения, по сравнению с реализацией решения, правильного при данном состоянии природы. Естественно, что правильное решение не влечет за собой никаких дополнительных потерь, и их величина равна нулю.

При выборе решения, наилучшим образом соответствующего различным состояниям природы, следует принимать во внимание только эти дополнительные потери, которые по существу, будут являться следствием ошибок выбора.

Для решения задачи строится так называемая “матрица рисков”, элементы котрой показывают, какой убыток понесет игрок (ЛПР) в результате выбора неоптимального аврианта решения.

Риском игрока rij при выборе стратегии i в условиях (состояниях) природы j называется разность между максимальным выигрышем, который можно получить в этих условиях и выигрышем, который получит игрок в тех же условиях, применяя стратегию i.

Если бы игрок знал заранее будущее состояние природы j, он выбрал бы стратегию, которой соответствует max элемент в данном столбце: maxi aij, тогда риск:   rij = maxi aij  -  aij.

Критерий Сэвиджа рекомендует в условиях неопределенности выбирать решение, обеспечивающее минимальное значение максимального риска:

vS = mini maxj rij = mini maxj (maxi aij  -  aij).

Для задачи “Поставщик” минимакс риска достигается сразу при двух стратегиях А2  и А3:

max min

0

200

200

50

100

100 100

100

60

100 100

 230

0

130

5. Критерий Лапласа.

В ряде случаев представляется правдоподобным следующее рассуждение: поскольку неизвестны будущие состояния природы, постольку можно считать их равновероятными. Этот подход к решению используется в критерии “недостаточного основания” Лапласа.

Для решения задачи для каждого решения подсчитывается математическое ожидание выигрыша (вероятности состояний природы полагаются равными yj = 1/n, j = 1:n), и выбирается то решение, при котором величина этого выигрыша максимальна.

vL = maxi å1/n aij  = 1/n maxi å aij.

Решением игры “Поставщик” по критерию Лапласа является вторая стратегия:

max

-250

-225

-225

-230

-265

Гипотеза о равновероятности состояний природы является довольно искусственной, поэтому принципом Лапласа можно пользоваться лишь в ограниченных случаях. В более общем случае следует считать, что состояния природы не равновероятны и использовать для решения критерий Байеса-Лапласа.

6.Критерий Байеса-Лапласа.

Этот критерий отступает от условий полной неопределенности - он предполагает, что возможным состояниям природы можно приписать определенную вероятность их наступления и, определив математическое ожидание выигрыша для каждого решения, выбрать то, которое обеспечивает наибольшее значение выигрыша:

vBL = maxi å aij  yj.

Этот метод предполагает возможность использования какой-либо предварительной информации о состояниях природы. При этом предполагается как повторяемость состояний природы, так и повторяемость решений, и прежде всего, наличие достаточно достоверных данных о прошлых состояниях природы. То есть основываясь на предыдущих наблюдениях прогнозировать будущее состояние природы (статистический принцип).

Возвращаясь к нашей игре “Поставщик” предположим, что руководители фирмы-потребителя, прежде чем принять решение, проанализировали, насколько точно поставщие ранее выполнял сроки поставок, и выяснили, что в 25 случаях из 100 сырье поступало с опозданием.

Исходя из этого, можно приписать вероятность наступления первого состояния природы вероятность yj = 0,75 = (1-0,25), второго - yj = 0,25. Тогда согласно критерию Байеса-Лапласа оптимальным является решение А1.

Стратегии

å aij  yj

А1

- 175*

А2

-187,5

А3

- 215

А4

- 297,5

Перечисленные критерии не исчерпывают всего многообразия критериев выбора решения в условиях неопределенности, в частности, критериев выбора наилучших смешанных стратегий, однако и этого достаточно, чтобы проблема выбора решения стала неоднозначной:

Решение Критерии
Стратегии Вальда maxmax Гурвица Сэвиджа Лапласа Байеса-Л

А1

* * *

А2

* * *

А3

* * *

А4

Из таблицы видно, что от выбранного критерия (а в конечном счете - от допущений) зависит и выбор оптимального решения.

Выбор критерия ( как и выбор принципа оптимальности) является наиболее трудной и ответственной задачей в теории принятия решений. Однако конкретная ситуация никогда не бывает настолько неопределенной,  чтобы нельзя было получить хоты-бы частичной информации отностительно вероятностного распределения состояний природы. В этом случае, оценив распределение вероятностей состояний природы применяют метод Байеса-Лапласа, либо проводяд эксперимент, позволяющий уточнить поведение природы.

 Литература

1. Аллен Р. Математическая экономия. М., Изд.ин.лит.,1963

2. Вентцель Е.С. Исследование операций. М.:Советское радио, 1972

3. Вильямс Дж.Д. Совершенный стратег. - М.: ИЛ,1960

4. Карлин С. Математические методы в теории игр, программировании и экономике  М.:Мир, 1964

5. Кофман А., Фор Р. Займемся исследованием операций. М:Мир, 1966

6. Ланге О. Оптимальные решения. М. Прогресс, 1967 .

7 Мак-Кинси Дж. Введение в теорию игр. М., Физматгиз,1966

8. Оуэн Г. Теория игр. М., Мир 1971

9. Р.Л. Кини, Х.Райфа Принятие решений при многих критериях:  предпочтения и замещения. М.:Радио и связь, 1981

10. Р.Штойер Многокритериальная оптимизация. Теория, вычисления,  приложения. М.:Радио и связь, 1992

11. Вопросы анализа и процедуры принятия решений.- М.: Мир, 1976

12. Статистические модели и многокритериальные задачи принятия  решений.- М.:Статистика, 1979.

13. Р.Л.Кини Теория принятия решений. - В кн.Исследование операций. М.:Мир, 1981 г.

14. Воробьев Н.Н. Теория игр для экономистов-кибернетиков, М.: Наука, 1985.

15. Крушевский А.В. Теория игр. Киев: Вища школа, 1977.

16. Дюбин Г.Н., Суздаль В.Г.Введение в прикладную теорию игр.М.:Наука, 1981

17. Мешковой Н.П., Закиров Р.Ш. Теория игр, конспект лекций. Челябинск, ЧПИ, 1974

18. Э.Й.Вилкас в сб. Современные направления теории игр. Вильнюс. Мокслас, 1976

19.  А.Д.Школьников Основы теории игр. Л, Изд.горного института, 1970

20. Смоляков Всегда существующее решение кооперативных игр и его  применение к анализу рынков. М.: ВНИИСИ, 1978

 [VU1]


Страницы: 1, 2, 3, 4


на тему рефераты
НОВОСТИ на тему рефераты
на тему рефераты
ВХОД на тему рефераты
Логин:
Пароль:
регистрация
забыли пароль?

на тему рефераты    
на тему рефераты
ТЕГИ на тему рефераты

Рефераты бесплатно, реферат бесплатно, курсовые работы, реферат, доклады, рефераты, рефераты скачать, рефераты на тему, сочинения, курсовые, дипломы, научные работы и многое другое.


Copyright © 2012 г.
При использовании материалов - ссылка на сайт обязательна.