![]() |
|
|
Реферат: Решение многокритериальной задачи линейного програмированияиз Т3 получаем:
Опорный план не получен, следовательно e4 – пассивное ограничение. 3.2.Определение p-множества с-методом. При подготовке решения для ЛПР интерес будет представлять информация обо всем множестве p-оптимальных (эффективных) решений Dxp. Графический метод позволяет сформулировать довольно простой подход к определению множества Dxp. Суть этого подхода в следующем. Решая усеченную задачу линейного программирования, устанавливаем факт существования д-конуса ( Dmax > 0). Поскольку для линейных ЦФ конфигурация д-конуса не зависит от положения его вершины х,, то, помещая ее на границу ei области Dx, решаем усеченную ЗЛП с добавлением ei, соответствующего i-му участку границ Dx. Вырождение д-конуса в точку х, будет признаком p-оптимальности и всех других точек данной грани. С помощью с-метода указанная процедура легко проделывается для пространства любой размерности n. Неудобство указанного метода состоит в том, что потребуется на каждой грани ОДР Dx найти точку х, (по числу граней Dx) сформулировать и решить столько же ЗЛП размера Rxn. Существенно сократить объем вычислений можно путем выбора вершины д-конуса в фиксированной точке х, = (1)n и в нее же параллельно себе перенести грани, составляющие границы Dx Приведенные к точке х, = (1)n приращения d-r и невязки ei запишутся в виде:
![]() где черта сверху у d, e и D означает, что эти величины приведены к точке х, = (1)n. По существу, (8) – ЗЛП размера (R+m)xn (D®max), а ее решение позволит найти все грани, составляющие p-множество Dxp. Составляем с-таблицу, не учитывая пассивные ограничения, т.е e1:
В начале решается усеченная ЗЛП (под чертой):
e1Î Dxp, так как Dmax = 0. Данный метод построения множества Dxp обладает недостатком, связанным с разрушением области допустимых решений (ОДР) Dx при переносе ее граней в х,. Действительно, вершины области Dx в преобразованной модели никак не отражены, а именно одна из них может составить p-множество в случае его совпадения с оптимальным решением. Такое совпадение возможно, если все ч-критерии достигают максимум на одной вершине. Физически это значит, что они слабопротиворечивы – угол при вершине д-конуса приближается к 180° (градиенты ч-критериев имеют практически совпадающие направления). Данный случай имеет место, если в p-множество не вошла ни одна из граней ОДР Dx. Следовательно, p-множество совпадает с оптимальным решением. Для определения p-множества решается обычная ЗЛП с одним из ч-критериев. Если при этом получено множество оптимальных решений, то решается ЗЛП с другим ч-критерием. Пересечение оптимальных решений и является p-множеством. Для ЛПР указание на то, что некоторая грань ei = eip Î Dxp p-оптимальна, является только обобщенной информацией. 4.Определение альтернативных вариантов многокритериальной задачи Наиболее естественным и разумным решением мк-задачи было бы органическое объединение всех ч-критериев в виде единой ЦФ. Иногда это удается сделать путем создания более общей модели, в которой ч-критерии являются аргументами более общей целевой функции, объединяющей в себе все частные цели операции. На практике этого редко удается достигнуть, что, собственно, и является основной причиной появления проблемы многокритериальности. Однако наиболее распространенный подход к решению проблемы пока остается все-таки один: тем или иным путем свести решение мк-задачи к решению однокритериальной задачи. В основе подхода лежит предположение о существовании некой функции полезности, объединяющей в себе ч-критерии, но которую в явном виде, как правило, получить не удается. Получение наиболее обоснованной «свертки» ч-критериев является предметом исследований нового научного направления, возникшего в связи с проблемой многокритериальности - теории полезности. В данной работе будут рассмотрены некоторые подходы, позволяющие получить варианты решения мк-задач при тех или иных посылках и которые лицо принимающее решение (ЛПР) должно рассматривать как альтернативные при принятии окончательного решения и которые, конечно, должны удовлетворять необходимому условию- p-оптимальности. 4.1.Метод гарантированного результатаПри любом произвольном решении х Î Dx каждый из ч-критериев примет определенное значение и среди них найдется, по крайней мере, один, значение которого будет наименьшим:
![]() Метод гарантированного результата (ГР) позволяет найти такое (гарантированное) решение, при котором значение «наименьшего» критерия станет максимальным. Таким образом, целевая функция (ЦФ) является некоторой сверткой ч-критериев (9), а МЗЛП сводится к задаче КВП (кусочно-выпуклого программирования) при ОДР Dx, заданной линейными ограничениями. Исходные условия записываем в каноническом виде: d1 = х1 - 2х2 - j + 2, d2 = х1 + х2 - j + 4, d3 = -х1 + 4х2 - j + 20, e1 = -х1 - х2 + 15, e2 = 5х1 + х2 - 1, e3 = x1 - х2 + 5, потом в виде с-таблицы:
Вводя в базис переменную j (d1 « j), получаем обычную ЗЛП при максимизации ЦФ j.
Решение ЗЛП приводит к конечной с-таблице Т4. Видно, что полученное гарантированное решение х p-оптимально, поскольку введение в базис любой свободной переменной (т.е. ее увеличение) приведет к снижению j - нижнего уровня ч-критериев ("сj < 0). Из таблицы также видно, что решение х0=(27/2; 3/2) находится на грани e4, при этом значения ч-критериев равны (находим по формуле Lr(xr) = j + dr): L1 = L3 = j = 25/2 L2 = j + d2 = 25/2 + 13/2 = 19 LS = 88/2 = 44 x° = ( 27/2; 3/2) Если бы в строке j имелись нули, то это означало бы, что одну из соответствующих переменных можно ввести в базис (увеличить без снижения уровня j). Это могло бы привести и к увеличению приращения dr для некоторого ч-критерия, находящегося в базисе. 4.2.Метод линейной свертки частных критериев Линейная свертка ч-критериев получается как х сумма с некоторыми весовыми коэффициентами mr:
где
Меняя порядок суммирования и вводя обозначения cj и c0, окончательно получим:
Коэффициенты веса обычно получаются путем опроса экспертов из соответствующей предметной области. Поскольку вектор m = (mr) – суть вектор-градиент ЦФ Lm(x), то предполагается, что он указывает направление к экстремуму неизвестной функции полезности. Положительная сторона такого подхода – несложность, не всегда компенсирует его серьезный недостаток – потерю физического смысла линейной свертки разнородных ч-критериев. Это затрудняет интерпретацию результатов, поэтому полученное таким путем решение, следует рассматривать только как возможный (альтернативный) вариант решения ЛПР. Для его сравнительного анализа следует привлекать любые другие варианты и, конечно, значения ч-критериев, получаемые при этом. Иногда при получении свертки ч-критериев предварительно нормируются каким-нибудь способом. Наиболее приемлемой линейная свертка ч-критериев может оказаться в том случае, когда ч-критерии однородны и имеют единый эквивалент, согласующий их наиболее естественным образом. На содержательном уровне данная МЗЛП состоит в необходимости принятия такого компромиссного решения (плана выпуска продукции) xk Î Dx, которое обеспечит, по возможности, наибольшую суммарную выручку L1(x) от реализации произведенной продукции; наименьший расход ресурсов i-го вида Lpl (x) (i = 1; m); минимальные налоговые отчисления от прибыли LH(x) (или общей выручки). Указанные цели носят противоречивый характер, и фактически мы имеем МЗЛП с m+2 –мя ч-критериями (m – количество видов потребляемых ресурсов). ОДР обусловлена ресурсными ограничениями и условиями неотрицательных переменных: где aij – расход ресурса i-го вида для выпуска 1 единицы продукции j-го вида (j=1,n); bi – запас ресурса i-го вида; ei – остаток ресурса i-го вида при плане выпуска x = (xj)n. Ч-критерии однородны, если они могут быть сведены к единой мере измерения. В качестве такой меры можно взять денежный эквивалент. Тогда m+2 ч-критерия могут быть с помощью линейной свертки сведены к трем: общая выручка (руб.): общая экономия ресурсов (руб.): налоговые отчисления (руб.): где cj – выручка от реализации 1 ед. продукции j-го вида (цена); si – стоимость (цена) 1 ед. ресурса i-го вида (i = 1;m); Пj – прибыль от реализации 1 ед. продукции j-го вида (j = 1;n); aj – доля (процент налоговых отчислений от прибыли (выручки). В заключение заметим, что коэффициенты mr не обязательно должны удовлетворять условию (10), но обязательно должны быть положительными, если все ч-критерии максимизируются. Перейдем к решению:
L1 max = 17 L2 max = 19 L3 = 5 LS = 41
5. Составление сводной таблицы. Окончательное решение сводится в таблицу, где записываются альтернативные варианты:
|
Страницы: 1, 2
![]() |
||
НОВОСТИ | ![]() |
![]() |
||
ВХОД | ![]() |
|
Рефераты бесплатно, реферат бесплатно, курсовые работы, реферат, доклады, рефераты, рефераты скачать, рефераты на тему, сочинения, курсовые, дипломы, научные работы и многое другое. |
||
При использовании материалов - ссылка на сайт обязательна. |