на тему рефераты
 
Главная | Карта сайта
на тему рефераты
РАЗДЕЛЫ

на тему рефераты
ПАРТНЕРЫ

на тему рефераты
АЛФАВИТ
... А Б В Г Д Е Ж З И К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я

на тему рефераты
ПОИСК
Введите фамилию автора:


Реферат: Некоторые Теоремы Штурма


В уравнение (2.43) входит лишь одна из неизвестных функций . Если решение  уравнения (2.43) известно, то соответствую­щее решение уравнения (2.44) может быть найдено с помощью квадратуры.

Преимущество уравнения (2.43) по сравнению с (2.40) состоит в том, что всякое решение уравнения (2.43) существует на всем интервале J, где непрерывны р и q. Это видно из соотношения, свя­зывающего решения уравнений (2.1) и (2.43).

Упражнение 2.1. Проверьте, что если функция  непре­рывна на J и имеет локально ограниченную вариацию (т. е. имеет ограниченную вариацию на всех замкнутых ограниченных подин-тервалах из J) и если - вещественное решение уравнения (2.1), то равенства

  (2.45)

при фиксированном значении  для некоторого  однозначно определяют непрерывные функции , имеющие локально ограниченную вариацию и

Соотношения (2.46) и (2.47) следует понимать так, что интегралы Римана - Стильтьеса от обеих их частей равны. Обратно, (непре­рывные) решения системы уравнений (2.46), (2.47) определяют реше­ния уравнения (2.1) с помощью соотношений (2.45). Заметим, что если q (t) > 0, р (t) > 0 и функция q(t) р(t) имеет локально огра­ниченную вариацию, то, полагая , мы получаем q/, а соотношения (2.45), (2.46) и (2.47) переходят в равенства

  (2.48)

       (2.49)

.                  (2.50)

§ 3. Теоремы Штурма

В этом параграфе мы будем рассматривать только уравнение вида (2.1) с вещественными непрерывными коэффициентами р (t) > 0, q (t). Под «решением» мы будем понимать «вещественное, не­тривиальное (т. е. ) решение». Нас будет интересовать множество нулей решения u (t). Для изучения этих нулей часто оказывается полезным преобразование Прюфера (2.42), поскольку   тогда и только тогда, когда .

Лемма 3.1. Пусть  - вещественное решение уравне­ния (2.1) при , где  и  вещественны и непре­рывны. Пусть функция и (t) имеет в точности  нулей  при . Предположим, что  - непрерывная функция, определенная равенством (2.42), и  . Тогда и  при  .

Доказательство. Заметим, что в той точке t, где u=0, т. е. где , производная  в силу (2.43). Следовательно, функция  возрастает в окрестности точек, где  для некоторого целого j. Отсюда следует, что если  и , то  при , а также что если , то  при . Тем самым лемма дока­зана.

В теоремах этого параграфа будут рассматриваться два урав­нения

 

где функции  вещественны и непрерывны на интервале J. и

   .             (3.2)

В этом случае уравнение (3.1) называется мажорантой Штурма для (3.1) на J, а уравнение (3.1)-минорантой Штурма для (3.1). Если дополнительно известно, что соотношения

   (3.32)

или

 и    (3.31)

выполняются в некоторой точке , то уравнение (3.32) назы­вается строгой мажорантой Штурма для (3.31) на J.

Теорема 3.1 (первая теорема сравнения Штурма). Пусть коэффициенты уравнения  непрерывны на интервале J: , и пусть уравнение (3.32) является мажорантой Штурма для (3.11). Предположим, что функция  является решением уравнения (3.11) и имеет точно  нулей  при  ,а функция  удовлетворяет уравне­нию (3.12) и

   (3.4)

при . [Выражение в правой (соответственно левой) части нера­венства (3.4) при  полагается равным , если  (соответственно если ); в частности, соотношение (3.4) справедливо при , если .] Тогда  имеет при  пo крайней мере n нулей. Более того,  имеет по крайней мере n нулей при , если при  в (3.4) имеет место строгое неравенство или если уравнение (3.1 г) является стро­гой мажорантой Штурма для (3.11) при .

Доказательство. В силу (3.4) можно определить при  пару непрерывных функций  с помощью соотношений

   (3.5)

Тогда справедливы аналоги соотношения (2.43):

  (3.6j)

Поскольку непрерывные функции , гладким образом зависят от , решения системы (3.6) однозначно определяются своими начальными условиями. Из (3.2) следует, что  при  и всех . Поэтому последняя часть (3.5) и следствие III.4.2 означают, что

 для В частности, из  следует, что , и первая часть теоремы вытекает из леммы 3.1.

Чтобы доказать последнюю часть теоремы, предположим вна­чале, что при  в (3.4) имеет место строгое неравенство. Тогда . Обозначим через  решение уравнения (3.62), удовлетворяющее начальному условию , так что . Поскольку решение уравнения (3.62) однозначно определяется начальными условиями,  при . Неравенство, аналогичное (3.7), означает, что  потому .  Следовательно,  имеет n нулей при  .

Рассмотрим теперь тот случай, когда в (3.4) имеет место равен­ство, но в некоторой точке из  выполняется либо (3.31), либо (3.32). Запишем (3.62) в виде

,

где

Если доказываемое утверждение неверно, то из уже рассмотрен­ного случая следует, что  при .Поэтому  и при . Так как  только в нулях функции , то отсюда следует, что  при  и .

Следовательно, если  при некотором t, то , т. е. .  Если (3.31) не выполняется ни при каком t из отрезка , то при некотором t имеет место (3.32), и потому (3.32) справедливо на неко­тором подинтервале из .  Но тогда на этом интервале   и потому . Однако это противоречит условию . Доказательство закончено.

Следствие 3.1 (теорема Штурма о разделении нулей). Пусть урав­нение (3.12) является мажорантой Штурма для (3.11) на интервале J, и пусть  - вещественные решения уравнений, (3.3j). Пусть  обращается в нуль в двух точках   интер­вала J. Тогда  имеет по крайней мере один нуль на . В частности, если  и вещественные линейно независимые решения уравнения  (3.11) (3.12). То нули функции  разделяют нули функции  и разделяются ими.

Заметим, что, последнее утверждение этой теоремы имеет смысл, поскольку нули функций  и  не имеют на J предельных точек. Кроме того, ,  не могут иметь общего нуля , так как в противном случае в силу того, что решения урав­нения (3.11) единственны, ,  где  (так что  и  не являются линейно независимыми).

Упражнение 3.1. (Другое доказательство теоремы Штурма о разделении нулей, когда p1(t)ºp2(t)>0, q2(t)³q1(t).)

Предположим, что u1(t)>0 при t1<t2<t3 и утверждение неверно: например, u2(t)>0 при t1£ t£t2. Умножая (p1(t)u¢)¢+q1(t)u=0, где u=u1, на u2, а (p2(t)u¢)¢+q2(t)u=0, где u=u2, на u1, вычитая и интегрируя по [t1,t2], получаем:

p(t)(u1¢u2-u1u2¢)³0, при t1£t£t2, где p=p1=p2. Это означает, что (u1/u2)¢³0; поэтому u1/u2>0 при t1<t£t2, т.е. получается, что u1(t2)>0 чего быть не может.

Решение:

(p1(t)u¢)¢+q1(t)u=0, u=u1

(p1(t)u1¢)¢+q1(t)u1=0.

Умножим левую часть равенства на u2, получим:

u2(p1(t)u1¢)¢+q1(t)u1u2=0.

Во втором уравнении проделаем соответствующие операции:

(p2(t)u¢)¢+q2(t)u=0, u2=u

(p2(t)u2¢)¢+q2(t)u2=0.

Умножим левую часть равенства на u1, получим:

u1(p2(t)u2¢)¢+q2(t)u1u2=0.

Вычитаем из первого уравнения второе, получим:

u2(p1u1¢)¢+q1u1u2-u1(p2u2¢)¢-q2u1u2=0, p=p1=p2

u2(pu1¢)¢+q1u1u2-u1(pu2¢)¢-q2u1u2=0

(u2(pu1¢)¢-u1(pu2¢)¢)+u1u2(q1-q2)=0

Упростим это уравнение,

u2(p¢u1¢+pu1¢¢)-u1(p¢u2¢+pu2¢¢)+u1u2(q1-q2)=0

Раскроем скобки, получим:

p¢u1¢u2+ pu1¢¢u2- p¢u1u2¢-pu1u2¢¢+u1u2(q1-q2)=0.

Сравнивая с формулой (2.2), получаем:

(p(u1¢u2-u1u2¢))¢+u1u2(q1-q2)=0

(p(u1¢u2-u1u2¢))¢-u1u2(q2-q1)=0

(p(u1¢u2-u1u2¢))¢=u1u2(q2-q1)=0.

Проинтегрируем это уравнение по [t1,t], получим:

[p(u1¢u2-u2¢u1)]¢dt = u1u2(q2-q1)dt,  где

u1u2>0, q2-q1³0.  Значит p(u1¢u2-u1u2¢)³0.

Т.о. (u1/u2)¢³0 Þ u1/u2>0.

Упражнение 3.2. с) Проверьте, что вещественные решения u(t) ¹0 уравнения u¢¢+m/t2u=0 (1/17) имеет не более одного нуля при t>0, если m£, и эти решения имеют бесконечно много нулей при t>0, если m>. В последнем случае множество нулей имеет две предельные точки t=0 и t=¥.

Решение: в §1 было рассмотрено упражнение 1.1 с), где показали, что функция u=tl является решением уравнения u¢¢+m/t2u=0 тогда и только тогда, когда l удовлетворяет уравнению  l(l-1)+ m=0. Решая его получили : l=±m.

Если m>1/4, то корни  l1 и  l2 – комплексные, т.е.

u=t1/2[cos (m-1/4 ln t)c1+c2sin(m-1/4 ln t)]

имеют бесчисленное множество нулей. В частности, если положить:

c1=sinu ,c2=cosu,

то получим:

u= t1/2[sin u cos (m-1/4 ln t)+cos u sin (m-1/4 ln t)]=

t1/2 [sin (u+m-1/4 ln t)].

Если m<1/4, то решение

u=с1t1/2+        +c2t1/2-

имеют не более одного нуля.

Так же, если m=1/4, то решение

u=c1t1/2+c2t1/2ln t

имеют не более одного нуля.

d) Рассмотрим уравнение Бесселя:

v¢¢+v¢/t+(1-m2/t2)v=0,                              (3.10)

где m-вещественный параметр. Вариация постоянных u=t1/2/v переводит уравнение (3.10) в уравнение:

u¢¢+(1-a/t2)u=0, где a=m2-1/4                  (3.11)

Проверим истинность этого утверждения u=t1/2v, следовательно:

v=u/t1/2=ut-1/2.

Найдём первую производную:

v¢=(ut-1/2) ¢=u¢t-1/2+u(t-1/2)¢=u¢t-1/2-1/2ut-3/2.

Теперь вторую производную:

v¢¢=(u¢t1/2) ¢-1/2(ut-3/2) ¢=u¢¢t-1/2 +u¢(t-1/2) ¢-1/2(u¢t-3/2+u(t-3/2) ¢)=

=u¢¢t-1/2 –1/2u¢t-3/2-1/2u¢t-3/2+3/4uut-5/2=

=u¢¢t-1/2-u¢t-3/2+3/4ut-5/2.

Подставляя в уравнение (3.10), получим:

v¢¢+v¢/t+(1-m2/t2)v=0.

u¢¢t-1/2-u¢t-3/2+3/4ut-5/2+1/t(u¢t-1/2-1/2ut-3/2)+(1-m2/t2)ut-1/2=0

t-1/2(u¢¢-u¢t-1+3/4ut-2+u¢t-1-1/2ut-2+u(1-m2/t2))=0

u¢¢+1/4ut-2+u(1-m2/t2)=0

u¢¢+u-m2u/t2+1/4ut-2=0

u¢¢+u-(m2u-1/4u)/t2=0

u¢¢+u-((m2-1/4)u)/t2=0

u¢¢+u-au/t2=0

u¢¢+(1-a/t2)u=0, где a=m2-1/4.

Покажем, что нули вещественного решения v(t) уравнения (3.10) образуют при t>0 такую последовательность t1<t2<…, что tn-tn-1®p при n®¥.

Так как в уравнении

u¢¢+(1-a/t2)u=0, т.е. уравнение

u¢¢+(1-(m2-1/4)/t2)u=0

m - постоянное число, то при m³1/4 и при t – достаточно большое, то выражение

1-(m2-1/4)/t2®1, т.е. если уравнение

u¢¢+(1-(m2-1/4)/t2)u=0

сравнить с уравнением u¢¢+u=0, то расстояние между последовательными нулями стремится к p, т.е. tn-tn-1®p при n®¥.

Теорема 3.2 (вторая теорема сравнения Штурма). Пусть выпол­нены условия первой части теоремы 3.1 и функция  имеет точно n нулей при . Тогда соотношение (3.4) выполняется при  [где выражение в правой (соответственно левой) части (3.4) при  полагается равным , если (соответственно,)]. Кроме того, при  в (3.4) имеет место строгое неравенство, если выполнены условия последней части теоремы 3.1.

Доказательство этого утверждения содержится по существу в доказательстве теоремы 3.1, если заметить, что из предположения о числе нулей функции  вытекает последнее неравенство в сле­дующей цепочке: . Аналогично, в предположениях последней части теоремы доказательство тео­ремы 3.1 дает неравенство .

Использованная литература:

1. Ф. Хартман. Обыкновенные дифференциальные уравнения: Учебн. пособие./ Пер. с англ. И.Х.Сабитова, Ю.В.Егорова; под ред. В.М.Алексеева.-М.: изд.”Мир”, 1970г.-720 с.

2. В.В.Степанов. Курс дифференциальных уравнений. Гос.изд. “Технико-теор. литер.”-М., 1953г.-468 с.

3. Большая Советская Энциклопедия. /Под ред. А.М.Прохорова. Изд. 3-е., М., “Советская Энциклопедия”, 1978г., т.29. “Чачан-Эне-ле-Бен.” – 640 с.

4. Г.Вилейтнер. “История математики от Декарта до середины 19-го столетия.” М., изд. “Наука.”, 1966г. – 508 с.

5. История математики с древнейших времён до начала 19-го столетия. /Под ред. Юшкевича А.П., т.3 /Математика 18-го столетия/., изд. “Наука.”, М., 1972г. – 496 с.


Страницы: 1, 2


на тему рефераты
НОВОСТИ на тему рефераты
на тему рефераты
ВХОД на тему рефераты
Логин:
Пароль:
регистрация
забыли пароль?

на тему рефераты    
на тему рефераты
ТЕГИ на тему рефераты

Рефераты бесплатно, реферат бесплатно, курсовые работы, реферат, доклады, рефераты, рефераты скачать, рефераты на тему, сочинения, курсовые, дипломы, научные работы и многое другое.


Copyright © 2012 г.
При использовании материалов - ссылка на сайт обязательна.