на тему рефераты
 
Главная | Карта сайта
на тему рефераты
РАЗДЕЛЫ

на тему рефераты
ПАРТНЕРЫ

на тему рефераты
АЛФАВИТ
... А Б В Г Д Е Ж З И К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я

на тему рефераты
ПОИСК
Введите фамилию автора:


Реферат: Методы решения некорректно поставленных задач


Доказательство. Пусть  z1 — квазирешение и u1=Az1. Так как множество М выпукло, то в силу линей­ности оператора А множество N=AM также выпукло. Очевидно, что и1 есть проекция элемента и на множество N. В силу того, что сфера в пространстве U по условию теоремы строго выпукла, проекция и определяется одно­значно. Далее доказательство завершается, как в тео­реме 1.

2.2.3. Пусть F и U — гильбертовы пространства, МÎSR — шар (|| z ||<=R ) в пространстве F и А — вполне непре­рывный линейный оператор.

В этом случае квазирешение уравнения (2; 0,1) мож­но представить в виде ряда по собственным элементам (функциям, векторам) jn оператора А*А, где А* — опе­ратор, сопряженный оператору А.

Известно, что А*А — самосопряженный положитель­ный вполне непрерывный оператор из F в F. Пусть l1>=l2>=…>=ln>=… — полная система его собственных значений, a j1, j2,…, jn,…—отвечающая им полная ортонормированная система его собственных элементов (функций, векторов). Элемент А*и можно представить в виде ряда

                                                                                 (2;2,2)

В этих условиях справедлива

Теорема 3. Квазирешение уравнения (2, 0,1) на множестве SR выражается формулами:

                                                                          (2;2,3)

если

                                                                                          (2;2,4)

и

                                                                        

если

                                                                                     (2;2,5)

           

Здесь b — корень уравнения

                                                                      (2;2,6)   

Доказательство. Квазирсшение минимизирует функционал

                                         rU2 (Az, u) == (Az — u, Az — u)                           (2;2,7)

(где (v,w ) скалярное произведение элементов v и w из U), уравнение Эйлера для которого имеет вид

                                         A*Az=A*u.                                                             (2;2,8)

Решение этого уравнения будем искать в виде ряда по системе {jn}:

                                                                              (2;2,9)      

Подставляя этот ряд в уравнение (2; 2,8) и используя разложение (2;2,2), находим сn=bn/ln. Следователь­но, неравенство (2; 2,4) означает, что ||z||<R и речь идет о нахождении безусловного экстремума функциона­ла (2; 2,7). Ряд (2; 2,3) и будет решением задачи.

Если же выполняется неравенство (2; 2,5), то это означает, что ||z||>=R и надо решать задачу на услов­ные экстремум функционала (2; 2,7) при условии, что || z ||2 = R2.  Методом неопределенных множителей Лагранжа эта задача сводится к нахождению безусловного экстремума функционала

(Аz-u, Аz-u) + b (z, z),

а последняя — к решению отвечающего ему уравнения Эйлера A*Az+bz=А*и. Подставляя сюда z в виде ряда (2; 2,9) и используя разложение (2; 2,2), находим

Параметр b определяем из условия || z ||2 = R2 , которое эквивалентно (2; 2,6).

2.3. Приближенное нахождение квазирешений

В предыдущем параграфе мы видели, что нахождение квазирешения связано с нахождением элемента в беско­нечномерном пространстве. Для приближенного нахожде­ния квазирешения естественно переходить к конечномер­ному пространству. Можно указать достаточно общий под­ход к приближенному нахождению квазирешений урав­нения (2; 0,1) , в котором А—вполне непре­рывный оператор.

Будем полагать, что выполнены указанные в  2.2. дос­таточные условия существования единственного квазире­шения на заданном множестве М, т. е. полагаем, что множество М — выпуклый компакт и сфера в пространст­ве U строго выпукла. Пусть

                                M1 Ì M2 Ì...Ì Mn Ì...

— возрастающая цепочка компактных замкнутых множеств Мn такая, что замыкание их объединения  совпадает с М. Квазирешение уравнения (2; 0,1) сущест­вует на каждом множестве Мn . Но оно может быть не единственным. Обозначим через Тn совокупность всех квазирешений на множестве Мn .

Покажем, что в качестве приближения к квазиреше­нию z1 на множестве М можно брать любой элемент z1n из Тn .  При этом

Пусть Nn = АМn и Вn множество проекций элемен­та и на множество Nn . Очевидно, что Вn = АТn  и N1 Í N2 Í …Í Nn; тогда

            r U(u,N1)>= …>=r U (u,Nn)>=… r U (u,N)= r U (u,Az1) .                         (2;3,1)

Так как множество всюду плотно на N, то для всякого e >0 найдется такое число n0(e), что для всех п >n0(e)                                     

                      rU(u,Nn)< rU(u,N)+ e                                 (2; 3,2)

Из (2; 3,1) и (2; 3,2) следует, что

                                            (2;3,3)

Поскольку

то




                                                                                                                     (2;3,4)    

Каждое множество Вn есть компакт, так как оно является замкнутым подмножеством компакта Nn. Поэтому в Вn  найдется такой элемент уn , что

rU(yn ,u) = inf rU(y,u)

                  yÎBn

Последовательность {yn} имеет хотя бы одну пре­дельную точку, принадлежащую N, так как N — компакт. Пусть у0 какая-нибудь предельная точка множества {yn} и {уnk} — подпоследовательность, сходящаяся к y0 , т. е.

Из (2; 3,3) и (2; 3,4) следует, что

Таким образом,

rU(u,y0)= rU(u,N).

Отсюда и из единственности квазирешения на множестве М следует, что

y0=Az1.

Так как у0 произвольная предельная точка множества {yn}, то последовательность {уn} сходится к Аz1. Это и означает, что в качестве приближения к квазирешению мож­но брать любой элемент z1n из множества Тп , так как в силу леммы параграфа 2.1. z1nàz* при nà¥.

Если в качестве Мп брать конечномерные (n-мерные) множества, то задача нахождения приближенного квази­решения на компакте М сводится к минимизации функ­ционала rU(Az, u) на множестве Мп , т. е. к нахождению минимума функции п переменных.

2.4. Замена уравнения Аz=u близким ему

Уравнения вида (2; 0,1), в которых правая часть u не принадлежит множеству N=AM, изучались М. М. Лав­рентьевым . Ему принадлежит идея замены исходного уравнения (2; 0,1) близким ему, в некотором смысле, уравнением, для которого задача нахождения решения устойчива к малым изменениям правой части и разрешима для любой правой части u ÎU. В простей­шем случае это делается следующим образом.

Пусть F ºU ºН — гильбертовы пространства, А — линейный, ограниченный, положительный и самосопря­женный оператор, SR º есть шар радиуса R в пространстве F, В — вполне непрерывный оператор, определенный на SR при любом R > 0. В ка­честве класса корректности М берется множество DR=BSR образ шара SR при отображении с помощью оператора В. Предполагается, что искомое точное решение zT уравнения (2; 0,1) с правой частью u=uT существует и принадлежит множеству DR. Уравнение (2; 0,1) заме­няется уравнением

                               (A+aE)z º Az+az=u ,                                         (2:4,1)

где a>0 – числовой параметр. Решение уравнения

                                   za=(A+aE)-1u ,                                                  (2; 4,2)

при соответствующем выборе параметра a, принимается за приближенное решение уравнения (2; 0,1). Здесь Е — единичный оператор.

Замечание. Для оценки уклонения rF(zT,zd) приближенного решения от точного можно использовать мо­дуль непрерывности w обратного оператора на N.

Пусть u1, u2 Î N  и  rU(u1,u2)<= d. Тогда

            w(d,N)= sup  rF(A-1u1,A-1u2).

                                             u1,u2 ÎN

Очевидно, что если rU(uT,ud)<= d  и  zd=A-1ud , то

                                                         rF(zT,zd)<=w(d,N).

Вернемся к уравнению (2; 4,1). Если || Az ||<=d и w(d,DR) = sup || z ||,   то легко

                                                                                                                  DR

получить оценку уклонения  za от zT. Очевидно, что

                  || za - zT  ||<=||za1 - zT|| + ||za - za1||,                                      (2;4,3)

где

za1=(A + aE)-1uT.

Следовательно,

||za - zT||<=w(d,DR) + d/a.                              (2;4,4)

Если известен модуль непрерывности w(d,DR) или его мажоранта, то из (2; 4,4) можно найти значение пара­метра  w как функцию d, при котором правая часть в не­равенстве (2; 4,4) будет минимальной.

2. 5. Метод квазиобращения

2.5.1. Известно, что задача Коши для уравнения тепло­проводности с обратным течением времени является не­устойчивой к малым изменениям начальных значений. Неустойчивость сохраняется и в случаях, когда решение подчиняется некоторым дополнительным граничным усло­виям. Для устойчивого решения таких задач разработан метод квазиобращения . Мы изложим существо его для простейшего уравнения теплопроводности, не вда­ваясь в вопросы обоснования. Подробное изложение в применении к более широкому классу задач содержится в .

2.5.2. Рассмотрим прямую задачу. Пусть D конечная область n-мерного евклидова пространства Rn точек x = (x1, x2, ..., xn), ограниченная кусочно-гладкой по­верхностью S, a t время. Пусть, далее, j(x) заданная непрерывная в D функция. Прямая задача состоит в на­хождении решения u=u(x,t) уравнения

                                                                   (2;5,1)

в области G º {x Î D, t > 0}, удовлетворяющего гранич­ным условиям

u(х, t) =0 при xÎS                                                     (2; 5,2)

и начальным условиям

u(x, 0)= j(x).                                                             (2; 5,3)

 Здесь

Известно, что решение такой задачи существует. Каждой функции j(x)ÎC  отвечает решение задачи (2; 5,1)— (2; 5,3). Будем обозначать его через u(х, t; j).

Обратная задача состоит в нахождении функции j(х) по известной функции u(х,t; j). В реальных задачах функция u(x,t;j) обычно получается в результате изме­рений и, следовательно, известна приближенно. Будем по­лагать, что uÎL2. Такая функция может и не соответст­вовать никакой «начальной» функции j(х). Таким обра­зом, может не существовать в классе функций С решения обратной задачи. Поэтому будем рассматривать задачу нахождения некоторого обобщенного решения обратной задачи.

Пусть заданы число T > 0 и функция y(x), опреде­ленная в области D, y(x) ÎL2. На функциях  j(х) класса С определен функционал

Обобщенным решением обратной задачи будем называть функцию j(х)., на которой достигается

                                                              f0=inf f(j)

        jÎC

Замечание. «Естественный» подход к решению этой задачи — выбрать функцию j(х).так, чтобы f(j)=0            .

Для этого достаточно найти решение прямой задачи

                    

u(x, t) = 0 для х Î S,  0 < t < T;

u(x,T) = y(x)

и положить j (x) = u(x,0). Но такая задача при задан­ной функции y(x) из L2, вообще говоря, неразрешима и, кроме того, неустойчива к малым изменениям функ­ции y(x).

На некотором классе обобщенных функций j (x) f0=0 . Поэтому рассматривается задача на­хождения приближенного значения f0 с заданным уровнем погрешности.

Для заданного числа e > 0 найти функцию je(x), на которой f (je)<=e.

Эта задача и решается методом квазиобращения.

Идея метода квазиобращения состоит в том, что вмес­то оператора теплопроводности   находится «близ­кий» ему оператор Вa , для которого задача с обращением отсчета времени

Baua = 0, x Î D, t < Т, a > 0;

ua (x,T)= y(x);

ua (x,t) = 0 для xÎ  S, t< Т

устойчива. Решив эту задачу, полагают j (x)=ua(x,0). Обычно в качестве оператора Вa берут оператор  и решают прямую задачу

xÎ D,          t<T,          a>0;


                                                        ua (x,T)= y(x);

                      ua (x,t) = 0 для xÎ  S,  0< t<= Т

                       Dua=0    для xÎ  S,  0< t<= Т.

Затем полагают

                                    j (x)=ua(x,0).

Следует отметить, что uaне сходится в обычном смыс­ле при a à0.

3.МЕТОД РЕГУЛЯРИЗАЦИИ РЕШЕНИЯ ОПЕРАТОРНЫХ УРАВНЕНИЙ

В главе предыдущем разделе рассмотрены случаи, когда класс возможных решений уравнения (2; 0,1) является компактом. Однако для ряда прикладных задач характерна ситуация, когда этот класс F не является компактом, и, кроме того, изме­нения правой части уравнения

                                                         Аz= u,                                               (3; 0,1)

связанные с ее приближенным характером, могут выво­дить за пределы множества AF образа множества F при отображении его с помощью оператора А. Такие задачи  называются существенно некорректными. Был разработан новый подход к решению некорректно поставленных задач, позволяющий строить приближенные решения уравнения (3; 0,1), устойчивые к малым изме­нениям исходных данных, для существенно некорректных задач. В основе этого подхода лежит фундаментальное понятие регуляризирующего оператора (P.O.) . Для упрощения изложения в настоящей главе мы будем полагать, что в уравнении (3; 0,1) приближенной может быть лишь пра­вая часть и, а оператор А известен точно.

3.1. Понятие регуляризирующего оператора

3.1.1. Пусть оператор А в уравнении (3; 0,1) таков, что обратный ему оператор

A-1  не является непрерывным на множестве AF и множество возможных решений F не является компактом.

Пусть zT есть решение уравнения Az =uT, т. е. AzT=uT. Часто вместо uT мы имеем некоторый элемент ud и известное число d > 0 такие, что rU(ud,uT)<= d, т. е. вместо точных исходных данных (uT,А) мы имеем при­ближенные исходные данные (ud, А) и оценку их погрешности d. Задача состоит в том, чтобы по известным исход­ным данным (ud, A, d) найти приближение zd к элементу zt, обладающее свойством устойчивости к малым измене­ниям ud. Очевидно, что в качестве приближенного реше­ния zd уравнения (3; 0,1) нельзя брать точное решение этого уравнения с приближенной правой частью и= ud, т. е. элемент zT, определяемый по формуле

                                                         zd=A-1 ud

так как оно существует не для всякого элемента u ÎU и не обладает свойством устойчивости к малым изменениям правой части и.

Числовой параметр d характеризует погрешность пра­вой части уравнения (3;0,1). Поэтому представляется естественным определить zd с помощью оператора, зави­сящего от параметра, значения которого надо брать согла­сованными с погрешностью d исходных данных ud . Эта согласованность должна быть такой, чтобы при dà0, т. е. при приближении (в метрике пространства U) правой части ud уравнения (3; 0,1) к точному значению uT, при­ближенное решение zd стремилось бы (в метрике прост­ранства F) к искомому точному решению zt уравнения AzT =uT.

Пусть элементы zT Î F и  uT Î U связаны соотношением AzT = uT.

Определение 1. Оператор R(и, d), действующий из пространства U в пространство F, называется регуля-ризирующим для уравнения Az = и (относительно эле­мента uT), если он обладает свойствами:

1) существует такое число d1 > 0, что оператор R(u, d) определен для всякого d, 0<=d<=d1, и любого udÎU такого, что

                                      rU(ud,uT)<= d;

2) для всякого e > 0 существует d0=d0(e, ud)<=d1 такое, что из неравенства

                                    rU(ud,uT)<= d<=  d0;

следует неравенство

rF(zd,zT)<= e,

 где

zd=R(ud,d).

Здесь не предполагается, вообще говоря, однозначность оператора R(u,d). Через zd обозначается произвольный элемент из множества {R(ud,d)} значений оператора R(ud,d).

3.1.2. В ряде случаев целесообразнее пользоваться другим определением регуляризирующего оператора (P.O.).

Определение 2. Оператор R(u, a), зависящий от параметра a и действующий из U в F, называется регуляризирующим для  уравнения Az (относительно эле­мента uT), если он обладает свойствами:

1) существуют такие числа d1>0, a1>0, что опера­тор R(u, a ) определен для всякого a, принадлежащего промежутку (0, a1), и любого uÎU, для которого

rU(u,uT)<=d1;

2) существует такой функционал a=a(u, d), опреде­ленный на множестве   Ud1º{u; r(u,uT)<= d1} эле­ментов иÎU, что для любого e > 0 найдется число d(e)<=d1 такое, что если u1ÎU и rU(u1,uT)<= d<= d(e), то

rF(za,zT)<= e , где

za=R(u1, a(u1,d)).

В этом определении не предполагается однозначность оператора R(u1, a(u1,d)). Следует отметить, что при  a= d получаем определение 1 .

     3.1.3. Если rU(ud,uT)<= d, то известно, что в качест­ве приближенного решения уравнения (3; 0,1) с прибли­женно известной правой частью ud можно брать элемент za=R(d, a), полученный с помощью регуляризирующе­го оператора R(u, a ), где a=a(ud)=a1(d) согласовано с погрешностью исходных данных ud. Это решение назы­вается регуляризованным решением уравнения (3; 0,1). Числовой параметр  a называется параметром регуляриза­ции. Очевидно, что всякий регуляризирующий оператор вместе с выбором параметра регуляризации a, согласо­ванного с погрешностью исходных данных ud , a=a(ud), определяет устойчивый к малым изменениям правой час­ти и метод построения приближенных решений уравнения (3;0,1). Если известно, что rU(ud,uT)<= d, то согласно определению регуляризирующего оператора можно так выбрать значение параметра регуляризации a=a(ud) ,

что при dà0 регуляризованное решение R(ud,a(ud)) стремится (в метрике F) к искомому точному ре­шению zT, т. е. rF(zT,za(ud)). Это и оправдывает пред­ложение брать в качестве приближенного решения урав­нения (3; 0,1) регуляризованное решение.

Таким образом, задача нахождения приближенного решения уравнения (3; 0,1), устойчивого к малым изме­нениям правой части, сводится:

а) к нахождению регуляризирующих операторов;

б) к определению параметра регуляризации a по до­полнительной информации о задаче, например, по величи­не погрешности, с которой задается правая часть ud.

Описанный метод построения приближенных решений называется методом регуляризации.

3.2. О решении вырожденных и плохо обусловленных систем линейных алгебраических уравнений

3.2.1. Известно, с какими трудностями связано решение так называемых плохо обусловленных систем линей­ных алгебраических уравнений: малым изменениям пра­вых частей таких систем могут отвечать большие (выхо­дящие за допустимые пределы) изменения решения.

Рассмотрим систему уравнений

                                                            Аz=u,                                                              (3; 2,1)

где А — матрица с элементами aij, А ={aij}, z — иско­мый вектор с координатами zj , z={zj}, и — известный вектор с координатами иi ,u= {ui}, i, j =1, 2, ..., п. Система (3; 2,1) называется вырожденной, если опреде­литель системы равен нулю, detA = 0. В этом случае матрица А имеет равные нулю собственные значения. У плохо обусловленных систем такого вида матрица А имеет близкие к нулю собственные значения.

Если вычисления производятся с конечной точностью, то в ряде случаев не представляется возможным уста­новить, является ли заданная система уравнений вырож­денной или плохо обусловленной. Таким образом, плохо обусловленные и вырожденные системы могут быть не­различимыми в рамках заданной точности. Очевидно, такая ситуация имеет место в случаях, когда матрица А имеет достаточно близкие к нулю собственные значения.

В практических задачах часто правая часть и и эле­менты матрицы А, т. е. коэффициенты системы (3; 2,1), известны приближенно. В этих случаях вместо системы (3;2,1) мы имеем дело с некоторой другой системой Az=и такой, что ||A-A||<=h, ||u-u||<= d, где смысл норм обычно определяется характером задачи. Имея

вместо матрицы А матрицу A, мы тем более не можем высказать определенного суждения о вырожденности или невырожденности системы (3; 2,1).

Страницы: 1, 2, 3


на тему рефераты
НОВОСТИ на тему рефераты
на тему рефераты
ВХОД на тему рефераты
Логин:
Пароль:
регистрация
забыли пароль?

на тему рефераты    
на тему рефераты
ТЕГИ на тему рефераты

Рефераты бесплатно, реферат бесплатно, курсовые работы, реферат, доклады, рефераты, рефераты скачать, рефераты на тему, сочинения, курсовые, дипломы, научные работы и многое другое.


Copyright © 2012 г.
При использовании материалов - ссылка на сайт обязательна.