на тему рефераты
 
Главная | Карта сайта
на тему рефераты
РАЗДЕЛЫ

на тему рефераты
ПАРТНЕРЫ

на тему рефераты
АЛФАВИТ
... А Б В Г Д Е Ж З И К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я

на тему рефераты
ПОИСК
Введите фамилию автора:


Реферат: Колебания системы Атмосфера - Океан - Земля и природные катаклизмы. Резонансы в Солнечной системе, нарушающие периодичность природных катаклизмов


Реферат: Колебания системы Атмосфера - Океан - Земля и природные катаклизмы. Резонансы в Солнечной системе, нарушающие периодичность природных катаклизмов

ЯЛТИНСКАЯ МАЛАЯ АКАДЕМИЯ НАУК

ШКОЛЬНИКОВ «ИСКАТЕЛЬ»

 Секция физики


Колебания системы « Атмосфера – Океан – Земля» и природные катаклизмы. 

Резонансы в Солнечной системе, нарушающие периодичность природных катаклизмов.


Действительный член МАН Крыма «Искатель»

Ученик 11 класса

Форосской общеобразовательной школы IIII ступени г. Ялты

КОРАБЛЕВ Андрей


Научный руководитель – СЛАСТИХИН Л.П.

Учитель-методист физики

ВВЕДЕНИЕ.

В настоящее время в средствах массовой печати, в научно-популярной литературе, да и в солидных изданиях все катаклизмы на земле (чрезвычайные события) стали объясняться воздействием какого-то одного фактора. Многие провидцы и просто гоняющиеся за сенсациями журналисты из псевдонаучных изданий выдвигают “теории” о наступающем “конце света”.  В мире все взаимосвязано и нельзя рассматривать одно в отрыве от другого. Я покажу на примере явления Эль-Ниньо то, как влияют межгодовые колебания системы Атмосфера-Океан-Земля на протекание различных физических явлений в атмосфере, в океане, на поверхности земли .

В последние месяцы в средствах массовой информации часто упоминаются чрезвычайные события (ураганы, наводнения,  засухи, небывалые морозы и т.д.), вызванные возникшим в марте 1997 года явлением Эль-Ниньо – потеплением поверхностных вод в центральной и восточной частях Тихого океана. Давайте разберем причины участившихся чрезвычайных событий.

          Явление Эль-ниньо неразрывно связано с явлением Южного колебания (перемещениями масс воздуха над тропическими частями Индийского и  Тихого океанов в южном полушарии), поэтому оба явления изучают как единое явление Эль-Ниньо - Южное колебание (ЭНЮК), подразумевая под ним механические и термические колебания тропической атмосферы и океана периодом 2-10 лет.        Будучи геофизическим явлением планетарного масштаба, ЭНЮК, как правило, приводит к тяжелым экологическим катастрофам, социально-экологические последствия которых ощушаются во всем мире.

          Можно показать, что это явление – лишь одно из проявлений межгодовых (с периодами 2-10) совместных колебаний системы атмосфера-океан-Земля.Чтобы понять, как это происходит, рассмотрим колебания каждой из компонент в отдельности.

          В системе Атмосфера – Океан - Земля имеют место автоколебания периодами 2-10лет. Первопричиной их являются, очевидно, флуктуации атмосферной циркуляции, которые обусловлены неравномерным разогревом атмосферы радиацией Солнца. Атмосферная циркуляция является основной причиной течений в океане. Взаимодействие атмосферной циркуляции с процессами в океане порождает колебания атмосферы и океана, которые раскачивают Землю. Поскольку Земля вращается вокруг своей оси, то ее колебания происходят не в плоскости какого-то меридиана, а по кругу – в виде нутаций. Географические полюсы Земли при этом совершают круговые движения. Движения полюсов вызывают полюсной прилив, который в свою очередь влияет на колебания атмосферы и океана. В итоге в системе атмосфера – океан Земля наблюдаются нелинейные колебания с характерными для них явлениями конкуренции, синхронизации и комбинационного резонанса. Вследствие нелинейности системы и изменений в климатической системе из-за деятельности человека или внешних факторов колебания носят нерегулярный характер.

          Видимыми проявлениями совместных колебаний системы атмосфера - океан - Земля являются Южное колебание, Эль-Ниньо и Ла-Нинья и движения географических полюсов Земли. Явление ЭНЮК оказывает существенное влияние на гидрологический режим Мирового океана и аномалии погоды по всему земному шару, на жизнь биосферы. Продуктивность биосферы из – за воздействия ЭНЮК испытывает вынужденные колебания тех же периодов 2 – 10 лет. Во время Эль-Ниньо складывается крайне неблагоприятная экологическая обстановка для холоднолюбивых форм планктона, рыб, морских животных и птиц. Биологическая продуктивность Мирового океана заметно снижается. В период Ла-Нинья экологические условия становятся благоприятными и продуктивность восстанавливается. Мировой сбор зерновых и технических культур падает при Эль-Ниньо и растет при Ла-Нинья. Опасные явления погоды (сильные ливни, ураганы, морозы, засухи и т.п.) и связанные с ними стихийные бедствия (наводнения, оползни, пожары, аварии и т.п.) усугубляют негативные последствия эль-Ниньо.

Дальнейшие эмпирические и теоретические исследования, способствующие созданию моделей колебаний системы атмосфера – океан – Земля, позволят предвычислять их фазу, делать успешные прогнозы возникновения Эль-Ниньо и предупреждать тяжелые экологические и социально – экономические последствия.

Для  исследования должны подвергаться анализу все сенсационные сообщения всех различных печатных изданий, однако анализ всех предсказаний нельзя проводить, используя изменения какого – то одного фактора, скажем, смещения магнитных полюсов. О влиянии на биосферу и цивилизацию надо анализировать по изменениям в Космосе, Океане, Земле.

КОЛЕБАНИЯ АТМОСФЕРЫ.

В 20-е гг. текущего столетия при анализе аномалий атмосферного давления в субтропической зоне Южного полушария было замечено, что, когда атмосферное  давление повышено над Тихим океаном, над Индийским оно понижено, и наоборот. Это явление и было названо Южным колебанием. Позже выяснилось, что движение гигантских масс воздуха вдоль тропической зоны океанов, вызывающее чередование знака этих аномалий давления, напоминает гигантские качели.

 


Рис. 1  Поле коэффициентов корреляции r между средними годовыми величинами атмосферного давления станции «Дарвин» (Австралия) и значениями давления в других пунктах Земли.

На рис. 1 показаны изолинии коэффициентов r ( увеличены в 10 раз). Для представленного случая в зоне от 300 с.ш. до 350 ю.ш. в Восточном полушарии коэффициенты корреляции положительные, а в Западном полушарии отрицательные.

Коэффициент корреляции r в рассматриваемом случае является мерой линейной статистической связи между многолетними величинами атмосферного давления в одном пункте (в нашем случае станция «Дарвин» (Австралия)) и другими пунктами земного шара. Чем ближе его величина к 1 или –1, тем теснее связь между величинами атмосферного давления в исследуемых пунктах.

Имеются своего рода два центра действия противоположного знака: австралийско – индонезийский и южнотихоокеанский. Оба расположены в тропиках Южного полушария ( отсюда и название Южное колебание).

Очаг наиболее тесной отрицательной корреляции (r < - 0,8 ) располагается вблизи станции «Таити» (170 ю.ш. , 1500 з.д.), поэтому в качестве индекса нужного колебания SOI ( South Oscillation Index) используют разность нормализованных аномалий давления на метеостанцях «Таити» и «Дарвин». При SOI £ 0 давление понижено над Тихим океаном и повышенно над Индийским океаном, при SOI ³ 0 картина обратная.

При первом взгляде на многолетние кривые индекса SOI, который фиксировался непрерывно с 1866 года, создается впечатление, что чередование его фаз носит случайный характер. Однако спектральный анализ показал наличие ярко выраженных преимущественных периодов: 6; 3,6; 2,8; 2,4 года ( рис. 2, красная кривая 1). Имеется также  небольшой пик около 12 лет. Важно, что все эти преобладающие периоды ( за исключением  периода 2,8 г.) примерно кратны периоду 1,2 г. ( номера гармоник nk = 5; 3; 2  и 10 соответственно).


    70                     20                    10                      7                        5

Рис. 2    Спектры мощности двух самых длительных рядов индексов SOI с 1866 г. по 1996 г.       ( красная кривая) и сходных с ним индексов DT с 1851 г. по 1996 г. ( синяя кривая). По оси абсцисс приведены периоды в кварталах, по оси ординат – спектральная плотность.

КОЛЕБАНИЯ ОКЕАНА.

Явление Южного колебания тесно связано с процессами в океане. При положительных SOI ( ³ 0 ) северо – восточные и юго – восточные пассатные ветры, дующие в тропиках Тихого океана, нагоняют теплую воду в его западную часть. Там образуется толстый слой теплого перемешивания. Глубина термоклина – тонкого слоя воды, отделяющего верхний перемешанный слой от глубинных слоев океана, в котором температура очень быстро падает с глубиной, - составляет 200 – 300 м., а температура воды на поверхности достигает 27 – 300 С. Наоборот, в тропиках восточной части Тихого океана в результате сгона формируется холодный и тонкий слой перемешивания. Глубина термоклина не превышает 50 м., а температура воды колеблется от 20 – 250С в океане до 15 – 190С у побережья Южной Америки.

Когда индекс SOI уменьшается и становится отрицательным, направленный к западу градиент давления тоже уменьшается, вплоть до обращения знака, пассатные ветры ослабевают и иногда меняют направление на противоположное: появляются западные ветры. Теплая вода, накопившаяся в западной части Тихого океана, не испытывая сопротивления ветра, устремляется на восток в форме внутренней экваториальной волны, распространяющейся со скоростью 2 – 4 м/с. Когда эта волна достигает берегов Южной Америки, вода накапливается, повышается уровень моря, углубляется граница термоклина, волна движется далее, отворачивая к полюсам, и в виде отраженной волны на запад. В  результате этого область теплой воды быстро расширяется. Такие случаи потепления вод в центральной и восточной частях экваториальной зоны Тихого океана и получили название явления Эль-Ниньо.

В отличие от термина Эль-Ниньо, которым пользуются рыбаки Перу для описания локального сезонного теплого течения у берегов Перу и Эквадора, явление Эль-Ниньо охватывает всю центральную и восточную части экваториальной зоны Тихого океана и экваториальную зону Индийского океана, что придает ему глобальное значение.

Эль-Ниньо неразрывно связано с Южным колебанием. Установлено, что чем больше SOI, тем ниже температура поверхности восточной и центральной частей Тихого океана. В явлении ЭНЮК поэтому выделяют две крайние фазы: теплую фазу (Эль-Ниньо) при SOI £ 0 и холодную фазу (Ла-Нинья) при SOI ³ 0.

При Эль-Ниньо уровень моря в восточной части Тихого океана примерно на 50 см. выше, чем в западной части, при Ла-Нинья – картина обратная. Это значит, что в тропической зоне имеются межгодовые колебания уровня моря между восточной и западной частями Тихого океана амплитудой примерно 50 см. Спектр этих колебаний аналогичен спектру SOI.

Со времени пионерских работ Дж. Бьеркнеса считается, что ЭНЮК есть самоподдерживающееся колебание, в котором аномалии температуры поверхности экваториальной части Тихого океана влияют на интенсивность пассатных ветров. Последние управляются океаническими течениями, а те в свою очередь формируют аномалии температуры поверхности океана.

Обычно строятся нелинейные модели взаимодействия океана с пассатными ветрами и исследуется поведение моделей в зависимости от амплитуды сезонного цикла температуры воды и скорости течения, параметров, характеризующих силу трения атмосферы с океаном, вариаций термоклина и т.п. В частности, показано, что при изменении во времени параметров сцепления и сезонного воздействия на экваторе возникают совместные колебания аномалий температуры океана, скорости течения и глубины термоклина с периодом 3 – 4 года и их гармоники. Когда температура воды и скорости течения изменяются в течение года, предельный цикл становится странным аттрактором – зоной фазового пространства, к которой притягиваются фазовые траектории и в которой изображающая точка совершает хаотическое движение, лишенное свойства повторяемости. Наличие хаоса расширяет и размазывает главные энергетические пики в спектре и сдвигает их в сторону низких частот. Годовые вариации основного состояния не только порождают нерегулярности периода колебаний, но и приводят к синхронизации колебаний с годовым циклом, в результате чего появляются субгармоники с периодом 3,4 и 5 лет.

Таким образом, все современные модели трактуют ЭНЮК как автоколебания совместной системы океан – атмосфера, не обращая внимания на то, что в спектре присутствуют составляющие, кратные не 1 году, а 1,2 года. Период 1,2 года, названный по имени его первооткрывателя периодом Чандлера, - это период свободного движения географических полюсов Земли. Он определяется сжатием и упругими свойствами Земли, поэтому естественно было предположить, что колебания ЭНЮК есть колебания не двойной системы океан – атмосфера, а тройной: атмосфера – океан – Земля.

ДИНАМИКА ВРАЩАЮЩИХСЯ ТЕЛ.

Прежде чем перейти к рассмотрению значения колебаний Земли в механизме явления ЭНЮК рассмотрим свойства нашей планеты как вращающегося тела. Нам необходимо ввести понятия прецессии и нутации.

Рассмотрим быстро вращающийся волчок. Пусть его ось вращения отклонена от вертикали на угол Q ( см. рис 3)


 

На волчок действует сила тяжести P = mg, где mмасса волчка, gускорение силы тяжести. Невращающееся тело под действием силы тяжести падает. В случае волчка падения не наблюдается. Ось его вращения непрерывно смещается, но не в направлении силы тяжести, а в перпендикулярном ей направлении, описывая конус вокруг вертикали. Это движение оси волчка называется прецессией. Чтобы понять, почему так ведет себя волчок, проанализируем его динамику.

Вектор момента импульса волчка равен H = JW, где Jмомент инерции волчка относительно его оси вращения, W - вектор угловой скорости. Сила тяжести Р создает момент силы L относительно точки опора ОL = [ R x P ], где R – радиус – вектор центра тяжести. Под действием момента силы L момент импульса волчка

                                                dH

изменяется со скоростью                 = L. Поскольку вектор L направ-

                                                dt

лен перпендикулярно векторам R и Р, и вектор Н совпадает по направлению с R , то конец вектора Н и с ним ось вращения волчка смещаются в направлении, перпендикулярном направлению силы тяжести Р. При отсутствии трения вектор Н меняется только по направлению, т.е вращается, описывая конус с вершиной в точке опоры О.

Какова угловая скорость w прецессии волчка? За промежуток времени dt вектор Н получает перпендикулярное себе приращение dН = L dt, лежащее в горизонтальной плоскости. Отношение dН к проекции вектора Н на горизонтальную плоскость НsinQ дает угол dj  поворота этой проекции за время dt:

                                            L

                             dj  =                 dt

                                        НsinQ

Производная dj / dt является искомой угловой скоростью прецессии:

                               

                  L           mgRsinQ         mgR

w =                 =                        =

           HsinQ          JW sinQ           JW

Итак, угловая скорость прецессии прямо пропорциональна величине момента силы тяжести и обратно пропорциональна моменту импульса волчка. Направление прецессии определяется правилом: момент силы L заставляет отрезок RsinQ вращаться около точки О в направлении к вектору L.

Более строгое рассмотрение показывает, что, помимо прецессии, ось волчка совершает быстрые колебания малой амплитуды. Эти колебания  ( дрожание оси ) называются нутацией   ( от лат. Nutatio – колебание ). Удвоенная амплитуда Q - Q0  и период t нутации волчка приближенно равны:

                               2АmgRsinQ0                                          2pA

Q - Q0   »                            ;      t  »   

                                (JW)2                                          JW

где Q и Q0  - пределы изменения угла Q в результате нутации, А – момент инерции волчка относительно оси, проходящей через точку О перпендикулярно оси вращения.

Как известно, Земля вращается вокруг своей оси со скоростью 7,29 . 10-5 рад /с. Угол наклона этой оси к плоскости земной орбиты – эклиптике – равен 660 33’ . Момент инерции Земли огромен – 8,04 . 1037 кгм2 . Фигура Земли близка к фигуре эллипсоида вращения. Когда Луна и Солнце не лежат в плоскости земного экватора, их силы притяжения  стремятся развернуть Землю так, чтобы экваториальные вздутия располагались по линии, соединяющей центр масс Земли с Луной и Солнцем. Но так же, как волчок, Земля не поворачивается в этом направлении, а под действием момента пары сил, действующих на экваториальные вздутия, прецессирует. Земная ось медленно описывает конус вокруг перпендикуляра к плоскости эклиптики (рис. 4).


                    

Вершина конуса совпадает с центром Земли. Так как момент импульса Земли очень велик (59 . 1032 кг . м2 . с-1 ), скорость прецессии очень мала ( период равен примерно 26 тыс. лет). Угол наклона земной оси к эклиптике при прецессии не меняется, оставаясь равным 660 33’ , и географические координаты пунктов на Земле остаются без изменений.

Моменты сил притяжения, которые действуют на экваториальные вздутия, меняются в зависимости от изменения положения Луны и Солнца по отношению к Земле. Когда Луна и Солнце находятся в плоскости земного экватора, моменты сил исчезают, а когда склонения Луны и Солнца максимальны, достигают наибольшей величины. Вследствие таких колебаний моментов сил тяготения наблюдается нутация земной оси. Нутационное движение складывается из ряда небольших периодических колебаний. Главнейшее из них имеет период 18,6 года – период обращения лунных узлов (точек пересечения орбиты Луны с эклиптикой). Движение с этим периодом происходит по эллипсу. Большая ось эллипса перпендикулярна направлению прецессионного движения и равна 16,4” (рис. 4). Малая ось параллельна направлению прецессионного движения и равна 13,7”. Таким образом, ось вращения земли описывает на небесной сфере волнообразную траекторию, точки которой находятся на угловом расстоянии в среднем около 230 27’ от полюса эклиптики.

Помимо лунно-солнечной прецессии и нутации, ось вращения Земли изменяет свое положение также и относительно тела Земли. Это явление называется движением полюсов. Оно приводит к изменению координат пунктов на Земле.

КОЛЕБАНИЯ ЗЕМЛИ.

Происходящее в процессе ЭНЮК перераспределение воздушных и водных масс приводит к тому, что ось наибольшего момента инерции отклоняется по меридиану Австралии при Эль-Ниньо и по меридиану Таити при Ла-Нинья. Земля, являясь гироскопом, преобразует качания этой оси в движение оси наибольшего момента инерции Земли по конусу относительно оси суточного вращения. Из-за этого точки, в которых ось вращения пересекает земную поверхность – мгновенные полюсы Земли, - движутся. Они перемещаются по земной поверхности вокруг своего среднего положения в направлении вращения Земли, т.е. с запада на восток. Фигура, строение и физические свойства Земли таковы, что период свободных колебаний полюсов Земли равен 1,2 года. Помимо этого, чандлерова, движения полюсов имеется еще и вынужденное движение полюсов периодом 1 год. Сложение этих двух движений порождает биения, в результате которых радиус траектории полюса меняется от максимального до минимального с периодом примерно 6 лет ( рис. 5).

 


 

Рис. 5  Траектория движения Северного географического полюса Земли в 1990 – 1996  

гг. с отметками начала каждого года.

Наибольшее удаление мгновенного полюса от среднего значения не превышает 15 м. (0,5”).

Движение полюсов порождает прилив в атмосфере и Мировом океане (полюсной прилив), амплитуда которого зависит от величины смещения полюса. Волна полюсного прилива движется в атмосфере и океане вслед за полюсами Земли и, несмотря на свою малость, приводит к синхронизации колебаний системы атмосфера – океан с циклами движения полюса. В результате в спектре ЭНЮК появляются гармоники с периодами, кратными чандлерову. Возникает явление комбинационного резонанса, при котором даже воздействия малой мощности способны возбудить наблюдаемое движение полюсов. Отсутствие в спектре ЭНЮК гармоник с периодами 1,2; 4,8; 7,2 года и т.д., вероятно, связано с явлением конкуренции – подавления одних гармоник другими в процессе их взаимодействия друг с другом.

Изменения интенсивности явления ЭНЮК во времени приводит к нестабильности процесса возбуждения чандлеровского движения полюсов, к изменению его характеристик (амплитуды, фазы, декремента затухания и т.д.). Например, в 1925 – 1945 гг. наблюдалось значительное затухание этого движения (в несколько раз уменьшилась его амплитуда, удлинился период и изменилась фаза). В этот же интервал времени имелись значительные аномалии в повторяемости теплых фаз ЭНЮК. Фазы с SOI < 0 стали возникать реже, а в период с 1930 по 1940 гг. длительных интервалов с SOI < 0 вообще не было. Около 1910 и 1955 гг. наблюдались максимальные амплитуды чандлерова движения полюсов. За 10 – 15 лет до этих моментов фазы SOI < 0 были наиболее длительными, интенсивными и, главное, кратными периоду Чандлера. Эти факты демонстрируют согласованность ЭНЮК с движением географических полюсов, т.е. с колебаниями оси Земли относительно оси суточного вращения.

Цикличность ЭНЮК тесно связана с цикличностью скорости вращения Земли. Механизм связи такой. В результате повышения температуры поверхности океана и выделения скрытого тепла конденсации при явлении Эль-Ниньо экваториальная тропосфера разогревается, увеличиваются разности температур между экватором и полюсами, что приводит к усилению западных ветров, к росту момента импульса атмосферы и как следствие к замедлению скорости вращения Земли (момент импульса системы атмосфера - Земля должен сохраняться). Во время Ла-Нинья аномалии температуры поверхности океана вдоль большей части экватора отрицательны, скрытого тепла выделяется меньше и температура экваториальной тропосферы понижается. Ослабевает контраст температуры между экватором и полюсами, падает сила западных ветров, момент импульса атмосферы уменьшается, и скорость вращения Земли увеличивается. Так как фазы ЭНЮК повторяются чаще всего через 6; 3,6; и 2,4 года, то в итоге имеет место аналогичная цикличность изменения скорости вращения Земли.

Страницы: 1, 2


на тему рефераты
НОВОСТИ на тему рефераты
на тему рефераты
ВХОД на тему рефераты
Логин:
Пароль:
регистрация
забыли пароль?

на тему рефераты    
на тему рефераты
ТЕГИ на тему рефераты

Рефераты бесплатно, реферат бесплатно, курсовые работы, реферат, доклады, рефераты, рефераты скачать, рефераты на тему, сочинения, курсовые, дипломы, научные работы и многое другое.


Copyright © 2012 г.
При использовании материалов - ссылка на сайт обязательна.