на тему рефераты
 
Главная | Карта сайта
на тему рефераты
РАЗДЕЛЫ

на тему рефераты
ПАРТНЕРЫ

на тему рефераты
АЛФАВИТ
... А Б В Г Д Е Ж З И К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я

на тему рефераты
ПОИСК
Введите фамилию автора:


Дипломная работа: Моделирование электрических схем при помощи средств программного пакета Micro-Cap 8


Рис. 3

Команда FFT Windows вызывает диалоговое окно спектрального анализа полученных в результате моделирования периодических процессов (рис. 3). В программе MC8 режим расчета спектров выгодно отличается от режима DSP (Digital Signal Processing) предыдущей версии программы MC7. Прежде всего, режим FFT позволяет рассчитать не только амплитудный (Mag), но и фазовый (Phase) спектр сигналов, а также получить действительную (Real) и мнимую (Imag) части спектра. Программа позволяет вывести в отдельное окно анализа одновременно несколько спектральных функций, определив для них отдельные графические окна (Plot Group) с соответствующим оформлением графиков (закладка Colors, Fonts and Lines).

На рис. 4 показаны одновременно выведенные на экран три рабочих окна: окно схем и два окна анализа (временной и спектральный анализ). Спектры сигналов V(1) и V(L1) представлены в виде набора гармоник, характерном для дискретного преобразования Фурье, а спектр сигнала V(C1) – в виде огибающей гармоник. В качестве модели сигнала V(1) используется меандр, поэтому четные гармоники спектров равны нулю. В спектре сигнала V(L1) отсутствует постоянная составляющая, поскольку функция V(L1) симметрична относительно оси времени.

Закладка FFT окна Properties (рис. 3) позволяет определить границы интервала времени, принимаемого для расчета спектра (Upper Time Limit, Lower Time Limit) и количество отсчетов сигнала (Number of Points), используемых в дискретном преобразовании Фурье. Причем в программе MC8 максимальное количество отсчетов увеличено до 220.

Рис. 4


Параметрическая оптимизация (команда Optimize) позволяет, изменяя значения компонентов схемы в процессе проведения оптимизации, получить характеристики схемы с параметрами, максимально близкими к заданным значениям. Использование режима параметрической оптимизации рассмотрено в [1].

Для анализа полученных в процессе моделирования графиков характеристик схемы можно воспользоваться различными средствами (инструментами), имеющимися в программе МС. Включение одного из имеющихся режимов измерения (управления электронным курсором) осуществляется нажатием на соответствующую пиктограмму в меню инструментов. Набор инструментов можно менять, если двойным щелчком курсора в поле графиков открыть диалоговое окно Properties и обратиться к закладке Tool Bar. Способы обработки результатов моделирования описаны в разделе 6.


2. Расчет частотных характеристик (AC Analysis)

Для проведения анализа частотных характеристик схемы необходимо к ее входу подключить источник синусоидального (SIN), импульсного (PULSE) сигнала или сигнала USER, параметры которого задаются пользователем (раздел 3.3). В этом случае в режиме AC программа МС8 вместо указанных источников подключает на вход схемы гармоническое возмущение с переменной частотой. В процессе расчета частотных характеристик комплексная амплитуда этого сигнала полагается равной 1 В, начальная фаза – равной нулю, а частота меняется в пределах, заданных в меню AC Analysis Limits.

В режиме AC сначала рассчитывается режим схемы по постоянному току, затем линеаризуются все нелинейные компоненты (пассивные компоненты с нелинейными параметрами, диоды, транзисторы, нелинейные управляемые источники) и выполняется расчет комплексных величин узловых потенциалов и токов ветвей. Цифровые компоненты при линеаризации заменяются их входными и выходными комплексными сопротивлениями, а передача сигналов через них не рассматривается.

Как правило, при расчете частотных характеристик используется один источник, воздействие которого приложено ко входу схемы. Если же источников несколько, то отклики от каждого сигнала будут складываться как комплексные величины.

2.1 Задание параметров моделирования (AC Analysis Limits)

После проверки правильности составления схемы и при отсутствии ошибок программа открывает окно задания параметров моделирования AC Analysis Limits, которое по своей структуре аналогично окну Transient Analysis Limits (рис. 5). Тем не менее, имеются и отличия, связанные с особенностями моделирования в режиме AC Analysis.


Рис. 5

Команды:

Состав команд (Run, Add, Delete, Expand, Stepping, Properties и Help) и их назначение аналогичны командам раздела 1.1.

Числовые параметры:

Frequency Rang – спецификация конечной и начальной частоты расчета частотных характеристик, определяемая форматом Fmax, Fmin. Если частота Fmin не указана, то расчет не производится. Отрицательные значения частоты не допускаются. Значения частот, на которых производится расчет характеристик, зависит от параметров, установленных в соседнем разделе «Опции»: Auto, Linear, Log и List (на рис. 5 установлена опция Auto). В режимах Auto и Log значение Fmin должно быть больше нуля.

Number of Point – количество точек по частоте (Nf), в которых производится расчет частотных характеристик. В режиме Auto количество точек определяется параметром Maximum Chang. При линейном законе изменения частоты (Linear) шаг приращения частоты ΔF равен

ΔF = Fk+1 – Fk = (Fmax - Fmin)/(Nf -1).

Если принят логарифмический масштаб (Log), то отношение соседних частотных точек определяется выражением:

Fk+1/Fk =( Fmax / Fmin)/( Nf -1).


В режиме List (список) параметр Number of Point во внимание не принимается, а список частотных точек указывается в спецификации Frequency Rang.

Temperature - диапазон изменения температуры в градусах Цельсия.

Maximum Change, % - максимально допустимое приращение величины первой спектральной функции на интервале шага по частоте в процентах от полной шкалы значений функции. Данный параметр используется при расчете шага приращения частоты в режиме Auto. Если график функции в процессе моделирования изменяется быстрее, то шаг приращения частоты автоматически уменьшается.

Noise Input – имя источника, генерирующего шум.

Noise Output – имя узлов (формат <имя первого узла>[,<имя второго узла>]), относительно которых вычисляется спектральная плотность выходного шума схемы. Если имя второго узла не определено, то выходной шум вычисляется относительно нулевого узла («земли»).

Последние два параметра используются при расчете уровня внутреннего шума схемы. В математических моделях компонентов, принятых в программе MC8, учитываются тепловые, дробовые и низкочастотные фликкер-шумы. При расчете выходного шума спектральные плотности шума от отдельных источников суммируются. Для построения графиков спектральной плотности шума на входе и выходе схемы достаточно ввести в графу Y Expression соответствующего графического окна имя переменной в виде INOISE или ONOISE. При этом графики других переменных нельзя одновременно выводить на экран. Если переменные INOISE или ONOISE не указаны, то при проведении частотного анализа в режиме AC параметры Noise Input и Noise Output игнорируются.

Вывод результатов моделирования:

К группе из четырех кнопок , определяющих характер вывода данных и рассмотренных в разделе 1.1, добавляется пятая кнопка, при нажатии на которую вызываются следующие команды:

* Rectangular – вывод графиков в декартовой системе координат;

  *Polar – вывод графиков в полярной системе координат;

*Smith chart plot – вывод графиков на круговой диаграмме Смита.

В графе P (Plot Group) указывается номер графического окна, в котором должна быть построена заданная функция.

Выражения:

Выражения X(Y) Expression и X(Y) Range имеют то же назначение, что и в режиме Transient Analysis. В качестве имени переменной по оси X в случае анализа частотных характеристик определяют F (частота), а при расчете импульсной характеристики схемы с помощью преобразования Фурье (FFT) по оси X откладывается переменная T (время). Для переменной Y Expression это может быть простая переменная V(1) или V(OUT) (при построении графика амплитудно-частотной характеристики), функция ph(V(1)) – при вычислении фазово-частотной характеристики и другие выражения.

Опции:

В окне AC Analysis Limits отсутствует опция Operation Point Only. В отличие от предыдущей версии в MC8 исключен раздел Frequency Step (шаг изменения частоты), а опции Auto, Linear, Log и List перенесены в раздел числовых параметров Frequency Rang.

На рис. 6 показаны результаты расчета программой МС8 амплитудно-частотных (АЧХ) и фазово-частотных характеристик (ФЧХ) простейшей частотно-зависимой цепи. Выбрана логарифмическая шкала по оси X и линейная шкала по оси Y обоих графиков. На графике АЧХ с помощью электронного курсора отмечены точки максимального подъема частотной характеристики и спада АЧХ до уровня 0,707. Так же, как и при временном анализе в режиме AC Analysis меняется состав меню и состав пиктограмм (команд) в строке инструментов. Команды раздела меню AC ничем не отличаются (за исключением FFT Windows) от команд, рассмотренных в разделе 1.2 (табл. 2). Сохраняются и правила применения кнопок  (Print Values),  (Animate),  (Thumb Nail Plot),  (Stepping) и др. Команда FFT Windows используется для рассчета импульсной характеристики схемы.

Рис.  6


3. Расчет передаточных функций по постоянному току (DC Analysis)

В режиме DC рассчитываются передаточные характеристики схемы по постоянному току. Ко входам цепи программа МС подключает один или два независимых источника постоянного напряжения или тока.   В качестве выходного сигнала может рассматриваться разность узловых потенциалов или ток через ветвь, в которую включен резистор. При расчете передаточных функций программа МС “закорачивает” индуктивности и исключает из схемы все конденсаторы. Далее рассчитывается режим по постоянному току при нескольких значениях входных сигналов.

Возможность подключения в режиме DC к схеме двух источников позволяет рассчитать не только передаточную функцию анализируемого устройства, но построить и семейство характеристик (например, семейство статических выходных характеристик транзистора).

3.1 Задание параметров моделирования (DC Analysis Limits)

После перехода в режим DC программа МС открывает окно задания параметров моделирования DC Analysis Limits (рис. 7), имеющее следующие разделы.

Рис. 7


Команды:

Окно содержит те же команды (Run, Add, Delete и др.), что и в режимах анализа временных и частотных характеристик.

Числовые параметры:

Строка Variable 1 предназначена для задания первой варьируемой переменной и содержит несколько граф.

В графе Method выбирается метод варьирования первой переменной:

-  Auto – автоматический;

-  Linear – линейный (задается в графе Range по формату Final[,Initial[,Step]]). Если не указан шаг (Step) варьируемой переменной, то он устанавливается по умолчанию равным 1/50 диапазона задаваемой переменной. Если не задавать начальное значение параметра, то по умолчанию ему будет присвоено нулевое значение;

-  Log – логарифмический масштаб переменной;

-  List – в виде списка значений переменной, разделяемых запятой.

В графе Name выбирается имя варьируемой переменной, причем в качестве таковой могут быть заданы не только источники напряжения и тока, но и температура или имя одного из компонентов, имеющих математические модели (например, диода или транзистора). При выборе такого компонента в расположенном справа окне выбирается варьируемый параметр его математической модели (на рис. 6 это параметр BF – коэффициент усиления тока транзистора).

Строка Variable 2 позволяет задать вторую варьируемую переменную. Если она отсутствует, то в графе Method выбирается None.

Temperature – диапазон изменения температуры в градусах Цельсия. Как и при других видах анализа, можно выбрать линейную (Linear) или логарифмическую (Log) шкалу изменения температуры, а также указать список (List) температур. В случае использования температуры в качестве одной из варьируемой переменной она обозначается как переменная TEMP при моделировании.

Number of Points – количество точек характеристики, выводимой в табличной форме.

Maximum change, % - максимально допустимое приращение графика первой функции на одном шаге варьируемой переменной (в процентах от полной шкалы). Используется при автоматическом (Auto) варьировании первой переменной. Если график функции меняется быстрее заданного приращения, то шаг приращения первой переменной автоматически уменьшается.

Опции:

Run Options – управление выдачей результатов расчетов:

-  Normal – результаты расчетов не сохраняются;

-  Save – сохранение результатов расчета в бинарном файле <имя схемы>.dsa;

-  Retrieve – считывание последних результатов расчета из созданного ранее файла <имя схемы>.dsa.

Auto Scale Ranges – автоматическое масштабирование по осям X и Y для каждого нового варианта расчетов.

Остальные разделы окна DC Analysis Limits аналогичны разделам рассмотренных выше окон задания параметров в режимах анализа Transient и AC. На рис. 8 в окне анализа показан пример расчета семейства выходных статических характеристик транзистора – зависимости тока коллектора (Ic[Q1]) от приложенного к транзистору напряжения (Vce[Q1]) при варьировании тока базы (I1). В окне схем изображена схема подключения независимых источников напряжения и тока к транзистору Q1 при моделировании передаточных функций. В соответствии с рис. 7 напряжение питания V1 (V1=Vce[Q1]) меняется при моделировании от 0 до 5 В, а базовый ток I1 при построении графиков варьируется с шагом 0,5 мА в диапазоне 0…5 мА. Моделирование проведено при температуре транзистора 27 С0.


Рис.  8

Для наглядности на этом же рисунке приведен фрагмент окна задания параметров моделирования, значения которых и определяют вид семейства выходных характеристик транзистора.


4. Многовариантный анализ (Stepping)

Во всех трех видах анализа Transient, AC и DC предусмотрена возможность многовариантного анализа характеристик схем. Диалоговое окно Stepping, имеющее 20 закладок и позволяющее задать вариации от одного до двадцати параметров схемы, можно вызвать или из окна задания параметров моделирования, или щелкнув курсором по пиктограмме . Окно Stepping (рис. 9) содержит следующие разделы.

Step What – строка выбора имени компонента и его варьируемого параметра. Содержание строки зависит от выбранного на панели Parameter Type типа параметра: Component, Model или Symbolic.

Рис. 9

Parameter Type – тип варьируемого параметра:

Component – в качестве варьируемого компонента схемы указывается его имя, выбираемое из списка, открываемого кнопкой  в первой строке Step What (например, R1, R2, C1, L1, D1, Q1, V1 и т.п.). Если в этом списке выбрать простой компонент, имеющий единственный параметр (резистор, конденсатор и т.д.), то справа на первой строке появляется стандартное имя Value (величина). Если же выбранный компонент имеет модель или макромодель (транзистор, операционный усилитель и др.), то справа на первой строке нужно выбрать имя ее параметра из списка, открываемого кнопкой  ;

Model – в качестве варьируемой величины указывается параметр модели компонента. Имя модели и соответствующий параметр выбираются из списков, открываемых кнопкой  . Следует иметь в виду, что по данному способу варьируются параметры всех компонентов, имеющих выбранную модель;

Symbolic – изменяемый параметр выбирается из списка параметров, определенных по директиве .define.

Следующие три строки определяют:

From – начальное значение выбранного параметра. При использовании логарифмической шкалы оно должно быть больше нуля;

To – конечное значение параметра. При выборе логарифмической шкалы оно также должно быть больше нуля;

Step value – величина шага параметра. При линейной шкале она прибавляется к текущему значению, а при логарифмической шкале умножается на текущее значение параметра.

Последние две строки недоступны, если используется списочный (List) способ задания значений параметров.

Method – характер изменения варьируемого параметра:

-  Linear – линейная шкала;

-   Log – логарифмическая шкала;

-   List – список значений.

Step It – включение (Yes) или выключение (No) режима вариации параметров.

Change – метод изменения нескольких параметров:

-  Step all variables - одновременное изменение всех варьируемых параметров (количества вариаций всех параметров должны быть равны между собой);

-  Step variables in nested loops - поочередное (вложенное) изменение варьируемых параметров (во внешнем цикле изменяется переменная, указанная на 1-й закладке).

Перед выполнением вариации параметров схемы рекомендуется убедиться, что моделирование выполняется без ошибок при номинальном значении параметров, т.е. схема задана правильно. Далее, вызвав окно Stepping, необходимо задать требуемые параметры варьирования, включить режим Stepping и, щелкнув по кнопке «OK», перейти в окно выбранного режима анализа. Для построения графиков исследуемых характеристик достаточно снова запустить режим анализа с помощью клавиши F2 или кнопки Run.

Пример многовариантного расчета частотных характеристик (АЧХ и ФЧХ) резонансного контура при вариации емкости конденсатора приведен на рис. 10. Варьируемые значения емкости конденсатора С1, соответствующие различным кривым семейства характеристик, введены в первое графическое окно анализа (АЧХ) с помощью команды Label Branches из меню режима электронной лупы Scope. При последующем детальном анализе одной из кривых семейства можно воспользоваться диалоговым окном Go to Branch, вызываемым пиктограммой . Например, для измерения резонансной частоты параллельного контура при значениях емкости конденсатора С1, соответствующих 25 пф и 100 пф, для левого курсора величина С1 принята равной 2,5Е-11 (25 пф), а для правого курсора – 1Е-10 (100 пф). Далее, используя пиктограмму  (Peak), находим максимумы исследуемых графиков. В результате измерений (рис. 10) определены значения резонансной частоты контура: 2,28 МГц (С1=100 пф) и  4,459 МГц (С1=25 пф).


Рис. 10

В программе MC8 имеются некоторые ограничения в использовании режима многовариантного анализа. В частности, недоступен статистический анализ по методу Монте-Карло при вариации параметров в режиме Stepping. Полный список ограничений вариации параметров приведен в HELP.


5. Расчет режима по постоянному току (Dynamic DC)

Режим Dynamic DC позволяет произвести анализ электрической схемы по постоянному току и отобразить результаты расчетов на чертеже схемы. Если предварительно на закладке Options команды Options>Preferences включен параметр Circuit Show Slider, то на схеме у изображений батарей и простых компонентов (резисторы, конденсаторы и индуктивности) размещаются движковые регуляторы. При их перемещении с помощью курсора изменяются и номинальные значения данных компонентов с отображением новых значений на схеме. Очевидно, что при изменении сопротивлений резисторов будут меняться и параметры схемы. Минимальные и максимальные значения величин компонентов определяются с помощью атрибутов SLIDER_MIN и SLIDER_MAX в окне задания параметров компонентов (см. разд. 3.1).

На рис. 11, а  приведена схема транзисторного  усилителя. После исполнения команды Analysis>Dynamic DC на чертеже схемы появляются изображения движковых регуляторов (рис. 11, б), а в окно схем вводится диалоговое окно для задания параметров моделирования.

Рис.  11

Программа МС8 производит расчет узловых потенциалов, токов ветвей и мощности. Объем выводимой на схему информации определяется нажатием в диалоговом окне соответствующих пиктограмм, назначение которых приводится ниже.

*  -  номер узла;

* - напряжение аналоговых узлов или логические состояния     цифровых узлов - Voltages;

  - токи ветвей - Currents;

  -  мощности, рассеиваемые в ветвях - Power Temps;

 - состояние p-n переходов (LIN – линейный режим, ON- переход  открыт, OFF – переход закрыт, SAT – переход в режиме насыщения) - Condition.

При выборе опции Place Text в окне схем появляется надпись, содержащая названия выведенных параметров схемы.

Следует отметить, что при использовании этих пиктограмм в режиме анализа переходных процессов (если не выбрана опция Operation Point Only) на схеме отображаются не значения режима по постоянному току, а значения переходных процессов в последний момент времени. Если же проводился анализ схемы в режимах AC или DC, то при использовании данных пиктограмм на схеме отображаются значения режима по постоянному току, рассчитанного последним.


6. Расчет режима по переменному току (Dynamic AC)

В отличие от более ранних версий в программе MC8 предусмотрен режим Dynamic AC, при котором производится расчет схемы по переменному току, т.е. вычисляются комплексные амплитуды напряжений в узлах и токов в ветвях схемы, а также рассчитывается не только активная, но и реактивная составляющая мощности.

Рис. 12

На рис. 12 показано окно схем после исполнения команды Analysis> Dynamic AC. Как видно из рисунка, при нажатой пиктограмме * указываются амплитуды (Magnitude) и фазы (Phase) гармонического колебания в различных узлах схемы в соответствии с форматом First Value, Second Value. Используя опции Magnitude, Magnitude in dB или Real Part для первой величины (First Value), а также опции Phase in Degrees или Phase in Radians для второй величины (Second Value), можно менять размерность значений выводимых параметров. Для отмены отображения на схеме одной из величин достаточно выбрать опцию None. Частота гармонического колебания, при которой проводится анализ схемы в режиме Dynamic AC, указывается в окне Frequency List. На рис. 12 Frequency List =1E6, т.е. расчет схемы по переменному току производился на частоте 1 МГц.


7. Расчет малосигнальных передаточных функций (Transfer Fuction)

Режим Transfer Fuction выполняет расчет малосигнальных передаточных функций в режиме по постоянному току, которые рассчитываются после линеаризации схемы в окрестностях рабочей точки. В качестве выходного выражения (Output Expression) может использоваться любая переменная или функция, имеющая смысл при анализе схемы по постоянному току. Например, это разность потенциалов между узлами A и B – V(A,B), падение напряжения на резисторе R – V(R) или ток, протекающий через резистор, - I(R) и др. Входное воздействие может вырабатывать источник (Sourse) напряжения или тока. Если обозначить выходную и входную переменные как Vout и Vin, то результатом расчета является передаточная функция (Transfer Function), равная dVout/dVin.

Страницы: 1, 2, 3


на тему рефераты
НОВОСТИ на тему рефераты
на тему рефераты
ВХОД на тему рефераты
Логин:
Пароль:
регистрация
забыли пароль?

на тему рефераты    
на тему рефераты
ТЕГИ на тему рефераты

Рефераты бесплатно, реферат бесплатно, курсовые работы, реферат, доклады, рефераты, рефераты скачать, рефераты на тему, сочинения, курсовые, дипломы, научные работы и многое другое.


Copyright © 2012 г.
При использовании материалов - ссылка на сайт обязательна.