![]() |
|
|
Учебное пособие: Анализ временных рядовУчебное пособие: Анализ временных рядовВведение В данной главе рассматриваются задачи описания упорядоченных данных, полученных последовательно (во времени). Вообще говоря, упорядоченность может иметь место не только во времени, но и в пространстве, например, диаметр нити как функция её длины (одномерный случай), значение температуры воздуха как функция пространственных координат (трёхмерный случай). В отличие от регрессионного анализа, где порядок строк в матрице наблюдений может быть произвольным, во временных рядах важна упорядоченность, а следовательно, интерес представляет взаимосвязь значений, относящихся к разным моментам времени. Если значения ряда известны в отдельные моменты времени, то такой ряд называют дискретным, в отличие от непрерывного, значения которого известны в любой момент времени. Интервал между двумя последовательными моментами времени назовём тактом (шагом). Здесь будут рассматриваться в основном дискретные временные ряды с фиксированной протяжённостью такта, принимаемой за единицу счёта. Заметим, что временные ряды экономических показателей, как правило, дискретны. Значения ряда могут быть измеряемыми непосредственно (цена, доходность, температура), либо агрегированными (кумулятивными), например, объём выпуска; расстояние, пройдённое грузоперевозчиками за временной такт. Если значения ряда определяются детерминированной математической функцией, то ряд называют детерминированным. Если эти значения могут быть описаны лишь с привлечением вероятностных моделей, то временной ряд называют случайным. Явление, протекающее во времени, называют процессом, поэтому можно говорить о детерминированном или случайном процессах. В последнем случае используют часто термин “стохастический процесс”. Анализируемый отрезок временного ряда может рассматриваться как частная реализация (выборка) изучаемого стохастического процесса, генерируемого скрытым вероятностным механизмом. Временные ряды возникают во многих предметных областях и имеют различную природу. Для их изучения предложены различные методы, что делает теорию временных рядов весьма разветвленной дисциплиной. Так, в зависимости от вида временных рядов можно выделить такие разделы теории анализа временных рядов: – стационарные случайные процессы, описывающие последовательности случайных величин, вероятностные свойства которых не изменяются во времени. Подобные процессы широко распространены в радиотехнике, метереологии, сейсмологии и т. д. – диффузионные процессы, имеющие место при взаимопроникновении жидкостей и газов. – точечные процессы, описывающие последовательности событий, таких как поступление заявок на обслуживание, стихийных и техногенных катастроф. Подобные процессы изучаются в теории массового обслуживания. Мы ограничимся рассмотрением прикладных аспектов анализа временных рядов, которые полезны при решении практических задач в экономике, финансах. Основной упор будет сделан на методы подбора математической модели для описания временного ряда и прогнозирования его поведения. 1.Цели, методы и этапы анализа временных рядов Практическое изучение временного ряда предполагает выявление свойств ряда и получение выводов о вероятностном механизме, порождающем этот ряд. Основные цели при изучении временного ряда следующие: – описание характерных особенностей ряда в сжатой форме; – построение модели временного ряда; – предсказание будущих значений на основе прошлых наблюдений; – управление процессом, порождающим временной ряд, путем выборки сигналов, предупреждающих о грядущих неблагоприятных событиях. Достижение поставленных целей возможно далеко не всегда как из-за недостатка исходных данных (недостаточная длительность наблюдения), так из-за изменчивости со временем статистической структуры ряда. Перечисленные цели диктуют в значительной мере, последовательность этапов анализа временных рядов: 1) графическое представление и описание поведения ряда; 2) выделение и исключение закономерных, неслучайных составляющих ряда, зависящих от времени; 3) исследование случайной составляющей временного ряда, оставшейся после удаления закономерной составляющей; 4) построение (подбор) математической модели для описания случайной составляющей и проверка ее адекватности; 5) прогнозирование будущих значений ряда. При анализе временных рядов используются различные методы, наиболее распространенными из которых являются : 1) корреляционный анализ, используемый для выявления характерных особенностей ряда (периодичностей, тенденций и т. д.); 2) спектральный анализ, позволяющий находить периодические составляющие временного ряда; 3) методы сглаживания и фильтрации, предназначенные для преобразования временных рядов с целью удаления высокочастотных и сезонных колебаний; 4) модели авторегрессии и скользящего среднего для исследование случайной составляющей временного ряда ; 5) методы прогнозирования. 2.Структурные компоненты временного ряда Как уже отмечалось, в модели временного ряда принято выделять две
основные составляющие : детерминированную и случайную (рис.). Под
детерминированной составляющей временного ряда В свою очередь, детерминированная составляющая может содержать следующие структурные компоненты: 1) тренд g, представляющий собой плавное изменение процесса во времени и обусловленный действием долговременных факторов. В качестве примера таких факторов в экономике можно назвать : а) изменение демографических характеристик популяции (численности, возрастной структуры); б) технологическое и экономическое развитие; в) рост потребления. 2) сезонный эффект s, связанный с наличием факторов, действующих циклически с заранее известной периодичностью. Ряд в этом случае имеет иерархическую шкалу времени (например, внутри года есть сезоны, связанные с временами года, кварталы, месяцы) и в одноименных точках ряда имеют место сходные эффекты. Рис. Структурные компоненты временного ряда. Типичные примеры сезонного эффекта: изменение загруженности автотрассы в течение суток, по дням недели, временам года, пик продаж товаров для школьников в конце августа - начале сентября. Сезонная компонента со временем может меняться, либо носить плавающий характер. Так на графике объема перевозок авиалайнерами (см рис.) видно, что локальные пики, приходящиеся на праздник Пасхи «плавают» из-за изменчивости ее сроков. Циклическая компонента c, описывающая длительные периоды относительного подъема и спада и состоящая из циклов переменной длительности и амплитуды. Подобная компонента весьма характерна для рядов макроэкономических показателей. Циклические изменения обусловлены здесь взаимодействием спроса и предложения, а также наложением таких факторов, как истощение ресурсов, погодные условия, изменения в налоговой политике и т. п. Отметим, что циклическую компоненту крайне трудно идентифицировать формальными методами, исходя только из данных изучаемого ряда. «Взрывная» компонента i, иначе интервенция, под которой понимают существенное кратковременное воздействие на временной ряд. Примером интервенции могут служить события «черного вторника» 1994г., когда курс доллара за день вырос на несколько десятков процентов. Случайная составляющая ряда отражает воздействие многочисленных факторов случайного характера и может иметь разнообразную структуру, начиная от простейшей в виде «белого шума» до весьма сложных, описываемых моделями авторегрессии-скользящего среднего (подробнее дальше). После выделения структурных компонент необходимо специфицировать форму их вхождения во временной ряд. На верхнем уровне представления с выделением лишь детерминированной и случайной составляющих обычно используют аддитивную либо мультипликативную модели. Аддитивная модель имеет вид
мультипликативная –
где
В свою очередь, детерминированная составляющая может быть представлена как аддитивная комбинация детерминированных компонент:
как мультипликативная комбинация:
либо как смешанная комбинация, например, 3.Модели компонентов детерминированной составляющей временного ряда 3.1.Модели трендаТренд отражает действие постоянных долговременных факторов и носит плавный характер, так что для описания тренда широко используют полиномиальные модели, линейные по параметрам
где значения степени k полинома редко превышает 5. Наряду с полиномиальными моделями экономические данные, описывающие процессы роста, часто аппроксимируются следующими моделями: – экспоненциальной
Эта модель описывает процесс с постоянным темпом прироста, то есть
– логистической У процесса, описываемого логистической кривой, темп прироста изучаемой характеристики линейно падает с увеличением y, то есть – Гомперца
Эта модель описывает процесс, в котором темп прироста исследуемой характеристики пропорционален ее логарифму
Две последние модели задают кривые тренда S-образной формы, представляя процессы с нарастающим темпом роста в начальной стадии с постепенным замедлением в конце. При подборе подходящей функциональной зависимости, иначе спецификации тренда, весьма полезным является графическое представление временного ряда. Отметим также, что тренд, отражая действие долговременных факторов, является определяющим при построении долговременных прогнозов. 3.2 Модели сезонной компонентыСезонный эффект во временном ряде проявляется на «фоне» тренда и его выделение оказывается возможным после предварительной оценки тренда. (Здесь не рассматриваются методы спектрального анализа, позволяющего выделить вклад сезонной компоненты в спектр без вычисления других компонент ряда). Действительно, линейно растущий ряд помесячных данных будет иметь схожие эффекты в одноименных точках – наименьшее значение в январе и наибольшее в декабре; однако вряд ли здесь уместно говорить о сезонном эффекте: исключив линейный тренд, мы получим ряд, в котором сезонность полностью отсутствует. В то же время ряд, описывающий помесячные объемы продаж новогодних открыток, хотя и будет иметь такую же особенность (минимум продаж в январе и максимум в декабре) будет носить скорее всего колебательный характер относительно тренда, что позволяет специфицировать эти колебания как сезонный эффект. В простейшем случае сезонный эффект может проявляться в виде строго периодической зависимости.
В общем случае значения, отстоящие на t могут быть связаны функциональной зависимостью, то есть
К примеру, сезонный эффект сам может содержать трендовую составляющую, отражающую изменение амплитуды колебаний . Если сезонный эффект входит в ряд аддитивно, то
где
В том случае, когда сезонный эффект носит мультипликативный характер, то есть модель ряда с использованием индикаторных переменных можно записать в виде Коэффициенты Для полностью мультипликативного ряда обычно проводят процедуру линеаризации операцией логарифмирования
Условимся называть представленные модели сезонного эффекта «индикаторными». Если сезонный эффект достаточно «гладкий» – близок к гармонике, используют «гармоническое» представление
где d - амплитуда, w - условия частоты (в радианах в единицу времени), a - фаза волны. Поскольку фаза обычно заранее неизвестна. Последнее выражение записывают как
где Параметры А и В можно оценить с помощью обычно регрессии. Угловая частота w считается известной. Если качество подгонки окажется неудовлетворительным, наряду с гармоникой w основной волны в модель включают дополнительно первую гармонику (с удвоенной основной частотой 2w), при необходимости и вторую и так далее гармоники. В принципе, из двух представлений: индикаторного и гармоничного – следует выбирать то, которое потребует меньшего числа параметров. 3.3 Модель интервенцииИнтервенция, представляющая собой воздействие, существенно превышающее флуктуации ряда, может носить характер «импульса» или «ступеньки». Импульсное воздействие кратковременно: начавшись, оно почти тут же заканчивается. Ступенчатое воздействие длительно, носит устойчивый характер. Обобщенная модель интервенции имеет вид
где
где 4.Методы выделения тренда Приведенные в п.3.1 спецификации ряда являются параметрическими функциями времени. Оценивание параметров может быть проведено по методу наименьших квадратов так же, как в регрессионном анализе. Хотя статистические предпосылки регрессионного анализа (см п. ) во временных рядах часто не выполняются (особенно п.5 – некоррелированность возмущений), тем не менее оценки тренда оказываются приемлемыми, если модель специфицирована правильно и среди наблюдений нет больших выбросов. Нарушение предпосылок регрессионного анализа сказывается не столько на оценках коэффициентов, сколько на их статистических свойствах, в частности, искажаются оценки дисперсии случайной составляющей и доверительные интервалы для коэффициентов модели. В литературе описываются методы оценивания в условиях коррелированности возмущений, однако их применение требует дополнительной информации о корреляции наблюдений. Главная проблема при выделении тренда состоит в том, что подобрать единую спецификацию для всего временного часто невозможно, поскольку меняются условия протекания процесса. Учет этой изменчивости особенно важен, если тренд вычисляется для целей прогнозирования. Здесь сказывается особенность именно временных рядов: данные относящиеся к «далекому прошлому» будут неактуальными, бесполезными или даже «вредными» для оценивания параметров модели текущего периода. Вот почему при анализе временных рядов широко используются процедуры взвешивания данных. Для учета изменчивости условий модель ряда часто наделяют свойством адаптивности, по крайней мере, на уровне оценок параметров. Адаптивность понимается в том смысле, что оценки параметров легко пересчитываются по мере поступления новых наблюдений. Конечно, и обычному методу наименьших квадратов можно придать черты адаптивности, пересчитывая оценки каждый раз, вовлекая в процесс вычислений старые данные плюс свежие наблюдения. Однако при этом каждый новый пересчет ведет к изменению прошлых оценок, тогда как адаптивные алгоритмы свободны от этого недостатка. 4.1 Скользящие средниеМетод скользящих средних – один из самых старых и широко известных способов выделения детерминированной составляющей временного ряда. Суть метода состоит в усреднении исходного ряда на интервале времени, длина которого выбрана заранее. При этом сам выбранный интервал скользит вдоль ряда, сдвигаясь каждый раз на один такт вправо (отсюда название метода). За счет усреднения удается существенно уменьшить дисперсию случайной составляющей. Ряд новых значений становится более гладким, вот почему подобную процедуру называют сглаживанием временного ряда. Процедуру сглаживания рассмотрим вначале для ряда, содержащего лишь трендовую составляющую, на которую аддитивно наложен случайных компонент. Как известно, гладкая функция может быть локально представлена в виде полинома с довольно высокой степенью точности. Отложим от начала временного ряда интервал времени длиной (2m+1) точек и построим полином степени m для отобранных значений и используем этот полином для определения значения тренда в (m+1)-й, средней, точке группы. Построим для определенности полином 3-го порядка для интервала из семи наблюдений. Для удобства дальнейших преобразований занумеруем моменты времени внутри выбранного интервала так, чтобы его середина имела нулевое значение, т.е. t = -3, -2, -1, 0, 1, 2, 3. Запишем искомый полином:
Константы
Дифференцируем по коэффициентам
Суммы нечетных порядков t от -3 до +3 равны 0, и уравнения сводятся к виду:
Используя первое и третье из уравнений, получаем при t=0:
Следовательно, значение тренда в точке t = 0 равно средневзвешенному значению семи точек с данной точкой в качестве центральной и весами
Для того чтобы вычислить значение тренда в следующей, (m+2)-й точке исходного ряда (в нашем случае пятой), следует воспользоваться формулой (1), где значения наблюдений берутся из интервала, сдвинутого на такт вправо, и т.д. до точки N-m . Далее приводятся формулы для подсчета скользящего среднего подбором полиномов второго и третьего порядка к отрезкам ряда длиной до 9 точек: количество точек формула 5 7 9 Свойства скользящих средних: 1) сумма весов равна единице (т.к. сглаживание ряда , все члены которого равны одной и той же константе, должно приводить к той же константе); 2) веса симметричны относительно серединного значения ; 3) формулы не позволяют вычислить значения тренда для первых и последних m значений ряда; |
|
|||||||||||||||||||||||||||||
![]() |
|
Рефераты бесплатно, реферат бесплатно, курсовые работы, реферат, доклады, рефераты, рефераты скачать, рефераты на тему, сочинения, курсовые, дипломы, научные работы и многое другое. |
||
При использовании материалов - ссылка на сайт обязательна. |