на тему рефераты
 
Главная | Карта сайта
на тему рефераты
РАЗДЕЛЫ

на тему рефераты
ПАРТНЕРЫ

на тему рефераты
АЛФАВИТ
... А Б В Г Д Е Ж З И К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я

на тему рефераты
ПОИСК
Введите фамилию автора:


Реферат: Волоконно-оптические системы


2.4.4 Характеристики оптического волокна как структурного элемента датчика и систем связи

Прежде чем оценивать значимость этих характеристик для обеих областей применения, отметим общие достоинства оптических волокон:

·  широкополосность (предполагается до нескольких десятков терагерц);

·  малые потери (минимальные 0,154 дБ/км);

·  малый (около 125 мкм) диаметр;

·  малая (приблизительно 30 г/км) масса;

·  эластичность (минимальный радиус изгиба 2 MM);

·  механическая прочность (выдерживает нагрузку на разрыв примерно 7 кг);

·  отсутствие взаимной интерференции (перекрестных помех типа известных в телефонии "переходных разговоров");

·  безындукционность (практически отсутствует влияние электромагнитной индукции, а следовательно, и отрицательные явления, связанные с грозовыми разрядами, близостью к линии электропередачи, импульсами тока в силовой сети);

·  взрывобезопасность (гарантируется абсолютной неспособностью волокна быть причиной искры);

·  высокая электроизоляционная прочность (например, волокно длиной 20 см выдерживает напряжение до 10000 B);

·  высокая коррозионная стойкость, особенно к химическим растворителям, маслам, воде.

В области оптической связи наиболее важны такие достоинства волокна, как широкополосность и малые потери, причем в строительстве внутригородских сетей связи наряду с этими свойствами особое значение приобретают малый диаметр и отсутствие взаимной интерференции, а в электрически неблагоприятной окружающей среде — безындукционность. Последние же три свойства в большинстве случаев здесь не играют какой-либо заметной роли.

В практике использования волоконно-оптических датчиков имеют наибольшее значение последние четыре свойства. Достаточно полезны и такие свойства, как эластичность, малые диаметр и масса. Широкополосность же и малые потери значительно повышают возможности оптических волокон, но далеко не всегда эти преимущества осознаются разработчиками датчиков. Однако, с современной точки зрения, по мере расширения функциональных возможностей волоконно-оптических датчиков в ближайшем будущем эта ситуация понемногу исправится.

Как будет показано ниже, в волоконно-оптических датчиках оптическое волокно может быть применено просто в качестве линии передачи, а может играть роль самого чувствительного элемента датчика. В последнем случае используются чувствительность волокна к электрическому полю (эффект Керра), магнитному полю (эффект Фарадея), к вибрации, температуре, давлению, деформациям (например, к изгибу). Многие из этих эффектов в оптических системах связи оцениваются как недостатки, в датчиках же их появление считается скорее преимуществом, которое следует развивать.

Следует также отметить, что оптические волокна существенно улучшают характеристики устройств, основанных на эффекте Саньяка.

2.5 Классификация  волоконно-оптических датчиков и примеры их применения

Современные волоконно-оптические датчики позволяют измерять почти все. Например, давление, температуру, расстояние, положение в пространстве, скорость вращения, скорость линейного перемещения, ускорение, колебания, массу, звуковые волны, уровень жидкости, деформацию, коэффициент преломления, электрическое поле, электрический ток, магнитное поле, концентрацию газа, дозу радиационного излучения и т.д.

Если классифицировать волоконно-оптические датчики с точки зрения применения в них оптического волокна, то, как уже было отмечено выше, их можно грубо разделить на датчики, в которых оптическое волокно используется в качестве линии передачи, и датчики, в которых оно используется в качестве чувствительного элемента. Как видно из таблицы 1, в датчиках типа "линии передачи" используются в основном многомодовые оптические волокна, а в датчиках сенсорного типа чаще всего — одномодовые.


Таблица 2.1 - Характеристики волоконно-оптических датчиков

Структура Измеряемая физическая величина Используемое физическое явление, свойство Детектируемая величина Оптическое волокно Параметры и особенности измерений

Датчики с оптическим волокном в качестве линии передачи

Проходящего типа Электрическое напряжение, напряженность электрического поля Эффект Поккельса Составляющая поляризация Многомодовое 1... 1000B; 0,1...1000 В/см
Проходящего типа Сила электрического  тока, напряженность магнитного поля Эффект Фарадея Угол поляризации Многомодовое Точность ±1% при 20...85° С
Проходящего типа Температура Изменение поглощения полупроводников Интенсивность пропускаемого света Многомодовое -10...+300° С (точность ±1° С)
Проходящего типа Температура Изменение постоянной люминесценции Интенсивность пропускаемого света Многомодовое 0...70° С (точность ±0,04° С)
Проходящего типа Температура Прерывание оптического пути Интенсивность пропускаемого света Многомодовое Режим "вкл/выкл"
Проходящего типа Гидроакустическое давление Полное отражение Интенсивность пропускаемого света Многомодовое Чувствительность ... 10 мПа
Проходящего типа Ускорение Фотоупругость Интенсивность пропускаемого света Многомодовое Чувствительность около 1 мg
Проходящего типа Концентрация газа Поглощение Интенсивность пропускаемого света Многомодовое Дистанционное наблюдение на расстоянии до 20 км
Отражательного типа Звуковое давление в атмосфере Многокомпонентная  интерференция Интенсивность отраженного света Многомодовое Чувствительность, характерная для конденсаторного микрофона
Отражательного типа Концентрация кислорода в крови Изменение спектральной характеристики Интенсивность отраженного света Пучковое Доступ через катетер
Отражательного типа Интенсивность СВЧ-излучения Изменение коэффициента отражения жидкого кристалла Интенсивность отраженного света Пучковое Неразрушающий контроль
Антенного типа Параметры высоковольтных импульсов Излучение световода Интенсивность пропускаемого света Многомодовое Длительность фронта до 10 нс
Антенного типа Температура Инфракрасное излучение Интенсивность пропускаемого света Инфракрасное 250...1200° С (точность ±1%)

Датчики с оптическим волокном в качестве чувствительного элемента

Кольцевой интерферометр Скорость вращения Эффект Саньяка Фаза световой волны Одномодовое >0,02 °/ч
Кольцевой интерферометр Сила электрического тока Эффект Фарадея Фаза световой волны Одномодовое Волокно с сохранением поляризации
Интерферометр Маха-Цендера Гидроакустическое давление Фотоупругость Фаза световой волны Одномодовое 1...100 рад×атм/м
Интерферометр Маха-Цендера Сила электрического тока, напряженность магнитного поля Магнитострикция Фаза световой волны Одномодовое

Чувствительность 10-9 А/м

Интерферометр Маха-Цендера Сила электрического тока Эффект Джоуля Фаза световой волны Одномодовое Чувствительность 10 мкА
Интерферометр Маха-Цендера Ускорение Механическое сжатие и растяжение Фаза световой волны Одномодовое 1000 рад/g
Интерферометр Фабри-Перо Гидроакустическое давление Фотоупругость Фаза световой волны (полиинтер­ференция) Одномодовое
Интерферометр Фабри-Перо Температура Тепловое сжатие и расширение Фаза световой волны (полиинтер­ференция) Одномодовое Высокая чувствительность
Интерферометр Фабри-Перо Спектр излучения Волновая фильтрация Интенсивность пропускаемого света Одномодовое Высокая разрешающая способность
Интерферометр Майкельсона Пульс, скорость потока крови Эффект Доплера Частота биений Одномодовое, многомодовое

10-4...108 м/с

Интерферометр на основе мод с ортогональной поляризацией Гидроакустическое давление Фотоупругость Фаза световой волны С сохранением поляризации Без опорного оптического волокна
Интерферометр на основе мод с ортогональной поляризацией Напряженность магнитного поля Магнитострикция Фаза световой волны С сохранением поляризации Без опорного оптического волокна
Неинтерферометрическая Гидроакустическое давление Потери на микроиз- гибах волокна Интенсивность пропускаемого света Многомодовое Чувствительность 100 мПа
Неинтерферометрическая Сила электрического тока, напряженность магнитного поля Эффект Фарадея Угол поляризации Одномодовое Необходимо учитывать ортогональные моды
Неинтерферометрическая Скорость потока Колебания волокна Соотношение интенсивности между двумя модами Одномодовое, многомодовое >0,3 м/с
Неинтерферометрическая Доза радиоактивного излучения Формирование центра окрашивания Интенсивность пропускаемого света Многомодовое 0,01...1,00 Мрад
Последовательного и параллельного типа Распределение температуры и деформации Обратное рассеяние Релея Интенсивность обратного рассеяния Релея Многомодовое Разрешающая способность 1 м

Рис. 2.5 - Волоконно-опти­ческий датчик проходящего типа.

Рис. 2.6 - Волоконно-оптический датчик антенного типа.

Рис. 2.7 - Волоконно-оптический датчик отражательного типа.


 

  2.6 Заключение по главе

Рис.2.4 - Классификация основных структур волоконно-опти­ческих датчиков:

а) с изменением характеристик волокна (в том числе специальных волокон)

б) с изменением параметров передаваемого света

в) с чувствительным элементом на торце волокна

Основными элементами волоконно-оптического датчика, как можно заметить из табл. 2.1, являются оптическое волокно, светоизлучающие (источник света) и светоприемные устройства, оптический чувствительный элемент. Кроме того, специальные линии необходимы для связи между этими элементами или для формирования измерительной системы с датчиком. Далее, для практического внедрения волоконно-оптических датчиков необходимы элементы системной техники, которые в совокупности с вышеуказанными элементами и линией связи образуют измерительную систему.

         3 Оптические гироскопы

Гироскоп выполняет функции детектора угловой скорости в инерциальном пространстве и по праву может называться абсолютным тахометром, являясь структурным элементом инерциальной навигационной системы, обрабатывающей информацию о местонахождении самолета или судна с целью выведения его на курс. В состав этой системы обычно входит три гироскопа — для измерения скорости вращения вокруг трех ортогональных осей, три акселерометра — для определения скорости и расстояния и направлении трех осей и компьютер — для обработки выходных сигналов этих приборов. К самолетным гироскопам предъявляются очень высокие требования: разрешающая способность и дрейф нуля 0,01°/ч, динамический диапазон 6 порядков, высокая стабильность (10-5) масштабного коэффи­циента преобразования угла поворота в выходной сигнал. До сих пор применялись в основном механические гироскопы, рабо­тающие на основе эффекта удержания оси вращения тела в одном направлении инерциального пространства (закон сохранения момента количества движения). Это дорогостоящие приборы, поскольку требуется высокая точность формы тела вращения и минимальное возможное трение подшипников. В отличие от механических оптические гироскопы, например, волоконно-оптические, созданные на основе эффекта Саньяка, имеют структуру статического типа, обладающую рядом до­стоинств, основные из  которых: отсутствие подвижных деталей и, следовательно, устойчивость к ускорению; простота конструкции; короткое время запуска; высокая чувствительность; высокая линейность характеристик; низкая потребляемая мощность; высокая надежность.

Кроме того, возможно снижение стоимости волоконно-оптических гироскопов за счет внедрения оптических интегральных схем. Наряду с использованием в самолетах и на судах можно ожидать по мере прогресса в технике гироскопов применения их в автомобилях, роботах и т. д.

3.1 Принцип действия оптического гироскопа

Принцип действия оптического гироскопа основан на эффекте Саньяка. По круговому оптическому пути, как показано на рис. 1, благодаря расщепителю луча свет распространяется в двух противоположных направлениях. Если при этом система находится в покое относительно инерциального пространства, оба световых луча распространяются встречно по оптическому пути одинаковой длины. Поэтому при сложении лучей в расщепителе по завершении пути нет фазового сдвига. Однако, когда оптическая система вращается в инерциальном пространстве с угловой скоростью W, между световыми волнами возникает разность фаз. Это явление и называется эффектом Саньяка.


Рис. 3.1 - Принцип возникновения эффекта Саньяка Рис 3.2 - Эффект Саньяка при оптическом пути произвольной формы

Пусть коэффициент преломления на оптическом пути n=1. При радиусе оптического пути a время достижения расщепителя лучей светом, движущимся по часовой стрелке, выражается как

                                                                                                          (3.1)

в противоположном направлении —

                                                                                                   (3.2)

где с — скорость света.

Из формул (1) и (2) разность времени распространения двух световых волн с учетом c>>aW

                                                                                      (3.3)

Это означает, что появляется разность длины оптических путей

                                                                                                                          (3.4)

или, иначе говоря, разность фаз

                                                                                                                      (3.5)

Здесь S — площадь, окаймленная оптическим путем; k — волновое число.

Формула (3.5) вытекает из формулы (3.3) при допущении, что n=1 и оптический путь имеет круговую форму, но возможно доказать, что формула (3.5) является основной для эффекта Саньяка. Она не зависит от формы оптического пути, положения центра вращения и коэффициента преломления.


     3.2 Структурные схемы оптических гироскопов

      На рис. 3.3 приведены общие  схемы  систем,  разработанных  для  повышения точности измерений. Кольцевой  лазерный  гироскоп  (рис. 3.3, а)  отличается  высокой  частотой световой волны — до нескольких сотен терагерц. Волоконно-оптический гироскоп на (рис. 3.3, б) имеет высокую чувствительность, благодаря использованию длинного одномодового оптического волокна с низкими потерями. В оптическом гироскопе пассивного типа с кольцевым резонатором (рис. 3.3, в) используется острая резонансная характеристика резонатора.

Рис. 3.3 - Структурные схемы гироскопов на эффекте Саньяка

wr и wl - частота генерации света с правым и левым вращением; t - время, необходимое для однократного прохождения светом кольцевого оптического пути; wFSR - полный спектральный диапазон


3.3 Волоконно-оптические гироскопы

На рис. 3.3 приведена оптическая схема волоконно-оптического гироскопа. По сути это интерферометр Саньяка (см. рис. 3.1), в котором круговой оптический контур заменен на катушку из длинного одномодового оптического волокна. Часть схемы, обведенная штриховой линией, необходима для повышения стабильности нулевой точки.

Рис. 3.4 - Принципиальная оптическая схема волоконно-оптического гироскопа

Таким образом, разность фаз между двумя световыми волнами, обусловленная эффектом Саньяка

                                                                                            (3.6)

где N — число витков в катушке из волокна; L — длина волокна; а — радиус катушки.

Следует обратить внимание на то, что в основные формулы не входит коэффициент преломления света в волокне.

Благодаря совершенствованию технологии производства выпускается волокно с очень низкими потерями. Чтобы не повредить волокно, намотка производится на катушку радиусом несколько сантиметров. При этом не  наблюдается сколько-нибудь заметного увеличения потерь. Можно создать сравнительно малогабаритный и высокочувствительный интерферометр Саньяка с катушкой небольшого радиуса (2...5 см), намотав на нее волокно большой длины. Сформировав оптимальную оптическую систему, можно измерять с высокой точностью изменения фазы (в инерциальной навигации — порядка 10-6`рад), а затем из формулы (3.6) определять  круговую скорость. Все это и составляет принцип работы волоконно-оптического гироскопа.

Поскольку данный волоконно-оптический гироскоп — пассивного типа, в нем отсутствуют такие проблемы, как явление синхронизма.

Пределы обнаружения угловой скорости. В основной оптической системе на (рис. 3.3) в состоянии оптические пути для света в обоих направлениях обхода будут одинаковы по  длине, а поскольку сигнал  на выходе светоприемника изменяется пропорционально   ,  то гироскоп нечувствителен к очень  малым поворотам. Считается, что в системе с оптимальной чувствительностью теоретические пределы обнаружения угловой скорости связаны с дробовым шумом светоприемника. Анализ показывает, что для оптического волокна с потерями a  существует определенная длина, позволяющая оптимизировать пределы обнаружения при дробовом  шуме:

                                                                                                       (3.7)

Рис.3.5, а. Чувствительность волоконно-оптического гироскопа при дробовом шуме светоприемника при оптимальной длине волокна

Рис.3.5, б. Чувствительность волоконно-оптического гироскопа при дробовом шуме светоприемника при разной длине световой волны

Результаты расчета при типичных значениях параметров приведены на рис. 3.5, а. Для оптического волокна с потерями  2  дБ/км пределы обнаружения примерно 10-8  рад/с  (0,001°/ч). Это как раз значения, применяемые в инерциальной навигации. На рис. 3.5, б показано, что благодаря увеличению радиуса катушки с оптическим волокном, а также использованию света с длиной волны 1,55 мкм, на которой потери в оптическом волокне очень низки, возможно создание измерителя оборотов в инерциальном пространстве с чрезвычайно малым дрейфом. Это позволяет применять измеритель не только в навигации, но и в геофизике.

В реальных волоконно-оптических гироскопах возможности ограничены шумовыми факторами.


     3.4 Шумовые факторы, методы их устранения

Методы повышения чувствительности еще не обеспечивают высокой стабильности,  необходимо учитывать шумовые фак­торы и принимать меры по их устранению.

3.4.1 Основные оптические системы с повышенной стабильностью

Для достижения высокой стабильности необходимо, чтобы внешние возмущения, воспринимаемые световыми лучами, движущимися в противоположных направлениях, были совершенно одинаковыми.

В основной оптической системе, показанной на рис. 4, при использовании светоприемника 1 свет дважды отражается рас­щепителем луча и, кроме того, дважды проходит сквозь него. При этом условие одинаковой длины оптического пути выпол­няется не совсем точно и вследствие температурных колебаний характеристик расщепителя луча на выходе возникает дрейф. При использовании светоприемника 2 происходит то же самое.  Чтобы световые лучи, введенные в оптическое волокно и излучаемые волокном, проходили одинаковый оптический путь, объединялись и разъединялись в одной и той же точке расщепителя луча, а также имели бы одинаковую моду, необходимо между расщепителями луча установить пространственный фильтр. В этом фильтре желательно использовать одномодовое оптическое волокно — то же, что и для чувствительной катушки.

Обычно в одномодовом оптическом волокне возможно распространение двух независимых мод с ортогональной поляризацией. Но поскольку оптические волокна обладают не совсем строгой осевой симметрией, фазовые постоянные этих двух мод различны. Однако между модами двух поляризаций происходит обмен энергией, характеристики которого изменяются под внеш­ним воздействием, поэтому излученный волокном свет обычно приобретает круговую поляризацию с неустойчивыми парамет­рами. Все это приводит к дрейфу выходного сигнала.

Если же на оптическом пути поместить, как это показано в обведенной штриховой линией части на рис. 4, поляризаци­онную пластину, т. е. пустить на оптический путь интерферо­метра световую волну с единственной поляризацией и в излу­чаемом свете выделить только составляющую с такой же поля­ризацией, то передаточная функция кольцевого оптического пути (оптического волокна) для лучей с противоположным на­правлением движения будет одинакова и, тем самым, проблема решена. Но и в этом случае остаются колебания мощности света, достигшего светоприемника, поэтому необходимо принять еще меры по стабилизации масштабного коэффици­ента. Одна из таких мер — введение деполяризатора, который компенсирует колебания поляризации в опти­ческом волокне и делает состояние поляризации произвольным, или введение оптического волокна, сохраняющего поляризацию. В гироскопах  со световым гетеродинированием эффективное решение проблемы  — нулевой метод.

Для устранения дрейфа, обусловленного колебаниями поля­ризации в оптическом волокне, требуется поляризатор с очень большим затуханием (около 90 дБ), но это требование смягча­ется при использовании оптического волокна с сохранением поляризации и источника света с низкой когерентностью. В оп­тическом волокне с сохранением поляризации из-за разности фазовых постоянных для мод с ортогональной поляризацией возникает разность длины оптического пути для этих мод, поэтому использование источника с низкой когерентностью излучения делает невозможным интерференцию между модами. Аналогичного эффекта можно добиться и при использовании деполяризатора.

Таблица 3.1 - Шумовые факторы в волоконно-оптических гироскопах

Шумовой фактор

Рекомендуемые меры по снижению шума

Колебания поляризации в оптическом волокне, например, преобразование линейной поляризации в круговую в одномодовом волокне Включение на выходе волокна анали­затора, для того чтобы выделить со­ставляющую поляризации одного направления
Разность длины оптических путей для световых волн, идущих в противопо­ложных направлениях, при динами­ческой нестабильности спектра ис­точника света Стабилизация спектра источника света
Разность частот волн, идущих по во­локну в противоположных направле­ниях, при колебаниях температуры Использование двух акустооптических модуляторов или модуляция прямо­угольными импульсами
Неравномерность распределения тем­пературы вдоль волокна Намотка оптического волокна, при ко­торой распределение температуры симметрично относительно середины катушки
Изменение фазы выходного сигнала из-за эффекта Фарадея в волокне под воздействием колебаний магнит­ного поля Земли Магнитное экранирование и использо­вание волокна с сохранением поля­ризации
Колебания (в расщепителе луча) отно­шения интенсивности прямого и об­ратного луча вследствие оптического эффекта Керра Модуляция излучаемого света прямо­угольными импульсами со скважностью 50%; использование широкополосного источника света
Интерференция прямого луча и луча обратного рассеяния Рэлея Фазовая модуляция световой волны; импульсная частотная модуляция лазерного излучения; использование слабоинтеферирующего источника света

    3.5 Выводы по главе

     В данной главе рассмотрен принцип действия некоторых оптических гироскопов, в том числе волоконно-оптических. Волоконно-оптические гироскопы на­ходят широкое применение. Быстрыми темпами ведется разработка различных приборов на микрооптической технологии, волоконно-оптических функциональных элементах, оптических волноводных элементах. К настоящему времени такие гироскопы среднего класса уже имеются в продаже.

Волоконно-оптические гироскопы отличаются от прежних отсутствием механических систем, что делает их пригодными не только в навигации, но и в других областях, например, для контроля движения бура при бурении нефтяных скважин. Кроме того, если увеличить диаметр кольца из оптического волокна, удлинить интервал интегрирования выходного сигнала, то можно повысить чувствительность, что позволит использовать гироскоп для прогноза погоды, измерения флюктуаций собственного вращения Земли и др.


Использованная литература

1 Полупроводниковые приборы. Транзисторы средней и большой мощности. Справочник.  Миркин А.А.-М.: Коллектив авторов, 1995. – 640с.

2 Мурадян А.Г. Усилительные устройства. –М.: Связь, 1976.    -280с.

3 Брискер А.С., Гусев Ю.М., Ильин В.В. и другие. Спектральное уплотнение волоконно-оптических линий ГТС//Электросвязь, 1990, №1, с41-42.

4 Брискер А.С., Быстров В.В., Ильин В.В.. Способы увеличения пропускной способности волоконно-оптических линий ГТС//Электросвязь, 1991, ,№4, с28-29.

5 М.М. Бутусов, С.М. Верник, С.Л. Балкин и другие. Волоконно-оптические системы передачи. -М.: Радио и связь, 1992 –416с.

6 Заславский К.Е..Учебное пособие. Волоконно-оптические системы передачи. Часть 3.-Н.:СибГАТИ, 1997 –61с.

7 Лазерная безопасность.Общие требования безопасности при разработке и эксплуатации лазерных изделий. -М.:Издательство стандартов, 1995 –20с.

8 Глазер В. “Световодная техника” М. Энегроатомиздат 1985г.

9 Савельев И. В. “Курс общей физики” М. Наука 1978, 1982г.

10 Волноводы оптической связи,  Теумин И.И.

11 Волоконно-оптические датчики, под ред. Т.Окоси, перевод с япон.

12 Оптические волноводы, Marcuse D., перевод с англ.

13 Основы волоконно-оптической связи, под ред. Е.М.Дианова, перевод с англ


Страницы: 1, 2, 3


на тему рефераты
НОВОСТИ на тему рефераты
на тему рефераты
ВХОД на тему рефераты
Логин:
Пароль:
регистрация
забыли пароль?

на тему рефераты    
на тему рефераты
ТЕГИ на тему рефераты

Рефераты бесплатно, реферат бесплатно, курсовые работы, реферат, доклады, рефераты, рефераты скачать, рефераты на тему, сочинения, курсовые, дипломы, научные работы и многое другое.


Copyright © 2012 г.
При использовании материалов - ссылка на сайт обязательна.