на тему рефераты
 
Главная | Карта сайта
на тему рефераты
РАЗДЕЛЫ

на тему рефераты
ПАРТНЕРЫ

на тему рефераты
АЛФАВИТ
... А Б В Г Д Е Ж З И К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я

на тему рефераты
ПОИСК
Введите фамилию автора:


Реферат: Сетевые ОС


Некоторые ОС для улучшения расширяемости поддерживают загружаемые драйверы, которые могут быть добавлены в систему во время ее работы. Новые файловые системы, устройства и сети могут поддерживаться путем написания драйвера устройства, драйвера файловой системы или транспортного драйвера и загрузки его в систему.

5.1.2.  Переносимость

Требование переносимости кода тесно связано с расширяемостью. Расширяемость позволяет улучшать операционную систему, в то время как переносимость дает возможность перемещать всю систему на машину, базирующуюся на другом процессоре или аппаратной платформе, делая при этом по возможности небольшие изменения в коде. Хотя ОС часто описываются либо как переносимые, либо как непереносимые, переносимость - это не бинарное состояние. Вопрос не в том, может ли быть система перенесена, а в том, насколько легко можно это сделать. Написание переносимой ОС аналогично написанию любого переносимого кода - нужно следовать некоторым правилам.

Во-первых, большая часть кода должна быть написана на языке, который имеется на всех машинах, куда вы хотите переносить систему. Обычно это означает, что код должен быть написан на языке высокого уровня, предпочтительно стандартизованном, например, на языке С. Программа, написанная на ассемблере, не является переносимой, если только вы не собираетесь переносить ее на машину, обладающую командной совместимостью с вашей.

Во-вторых, следует учесть, в какое физическое окружение программа должна быть перенесена. Различная аппаратура требует различных решений при создании ОС. Например, ОС, построенная на 32-битовых адресах, не может быть перенесена на машину с 16-битовыми адресами (разве что с огромными трудностями).

В-третьих, важно минимизировать или, если возможно, исключить те части кода, которые непосредственно взаимодействуют с аппаратными средствами. Зависимость от аппаратуры может иметь много форм. Некоторые очевидные формы зависимости включают прямое манипулирование регистрами и другими аппаратными средствами.

В-четвертых, если аппаратно зависимый код не может быть полностью исключен, то он должен быть изолирован в нескольких хорошо локализуемых модулях. Аппаратно-зависимый код не должен быть распределен по всей системе. Например, можно спрятать аппаратно-зависимую структуру в программно-задаваемые данные абстрактного типа. Другие модули системы будут работать с этими данными, а не с аппаратурой, используя набор некоторых функций. Когда ОС переносится, то изменяются только эти данные и функции, которые ими манипулируют.

Для легкого переноса ОС при ее разработке должны быть соблюдены следующие требования:

  • Переносимый язык высокого уровня. Большинство переносимых ОС написано на языке С (стандарт ANSI X3.159-1989). Разработчики выбирают С потому, что он стандартизован, и потому, что С-компиляторы широко доступны. Ассемблер используется только для тех частей системы, которые должны непосредственно взаимодействовать с аппаратурой (например, обработчик прерываний) или для частей, которые требуют максимальной скорости (например, целочисленная арифметика повышенной точности). Однако непереносимый код должен быть тщательно изолирован внутри тех компонентов, где он используется.
  • Изоляция процессора. Некоторые низкоуровневые части ОС должны иметь доступ к процессорно-зависимым структурам данных и регистрам. Однако код, который делает это, должен содержаться в небольших модулях, которые могут быть заменены аналогичными модулями для других процессоров.
  • Изоляция платформы. Зависимость от платформы заключается в различиях между рабочими станциями разных производителей, построенными на одном и том же процессоре (например, MIPS R4000). Должен быть введен программный уровень, абстрагирующий аппаратуру (кэши, контроллеры прерываний ввода-вывода и т. п.) вместе со слоем низкоуровневых программ таким образом, чтобы высокоуровневый код не нуждался в изменении при переносе с одной платформы на другую.

5.1.3.  Совместимость

Одним из аспектов совместимости является способность ОС выполнять программы, написанные для других ОС или для более ранних версий данной операционной системы, а также для другой аппаратной платформы.

Необходимо разделять вопросы двоичной совместимости и совместимости на уровне исходных текстов приложений. Двоичная совместимость достигается в том случае, когда можно взять исполняемую программу и запустить ее на выполнение на другой ОС. Для этого необходимы: совместимость на уровне команд процессора, совместимость на уровне системных вызовов и даже на уровне библиотечных вызовов, если они являются динамически связываемыми.

Совместимость на уровне исходных текстов требует наличия соответствующего компилятора в составе программного обеспечения, а также совместимости на уровне библиотек и системных вызовов. При этом необходима перекомпиляция имеющихся исходных текстов в новый выполняемый модуль.

Совместимость на уровне исходных текстов важна в основном для разработчиков приложений, в распоряжении которых эти исходные тексты всегда имеются. Но для конечных пользователей практическое значение имеет только двоичная совместимость, так как только в этом случае они могут использовать один и тот же коммерческий продукт, поставляемый в виде двоичного исполняемого кода, в различных операционных средах и на различных машинах.

Обладает ли новая ОС двоичной совместимостью или совместимостью исходных текстов с существующими системами, зависит от многих факторов. Самый главный из них - архитектура процессора, на котором работает новая ОС. Если процессор, на который переносится ОС, использует тот же набор команд (возможно с некоторыми добавлениями) и тот же диапазон адресов, тогда двоичная совместимость может быть достигнута достаточно просто.

Гораздо сложнее достичь двоичной совместимости между процессорами, основанными на разных архитектурах. Для того, чтобы один компьютер выполнял программы другого (например, DOS-программу на Mac), этот компьютер должен работать с машинными командами, которые ему изначально непонятны. Например, процессор типа 680x0 на Mac должен исполнять двоичный код, предназначенный для процессора 80x86 в PC. Процессор 80x86 имеет свои собственные дешифратор команд, регистры и внутреннюю архитектуру. Процессор 680x0 не понимает двоичный код 80x86, поэтому он должен выбрать каждую команду, декодировать ее, чтобы определить, для чего она предназначена, а затем выполнить эквивалентную подпрограмму, написанную для 680x0. Так как к тому же у 680x0 нет в точности таких же регистров, флагов и внутреннего арифметико-логического устройства, как в 80x86, он должен имитировать все эти элементы с использованием своих регистров или памяти. И он должен тщательно воспроизводить результаты каждой команды, что требует специально написанных подпрограмм для 680x0, гарантирующих, что состояние эмулируемых регистров и флагов после выполнения каждой команды будет в точности таким же, как и на реальном 80x86.

Это простая, но очень медленная работа, так как микрокод внутри процессора 80x86 исполняется на значительно более быстродействующем уровне, чем эмулирующие его внешние команды 680x0. За время выполнения одной команды 80x86 на 680x0, реальный 80x86 может выполнить десятки команд. Следовательно, если процессор, производящий эмуляцию, не настолько быстр, чтобы компенсировать все потери при эмуляции, то программы, исполняющиеся под эмуляцией, будут очень медленными.

Выходом в таких случаях является использование так называемых прикладных сред. Учитывая, что основную часть программы, как правило, составляют вызовы библиотечных функций, прикладная среда имитирует библиотечные функции целиком, используя заранее написанную библиотеку функций аналогичного назначения, а остальные команды эмулирует каждую по отдельности.

Соответствие стандартам POSIX также является средством обеспечения совместимости программных и пользовательских интерфейсов. Во второй половине 80-х правительственные агентства США начали разрабатывать POSIX как стандарты на поставляемое оборудование при заключении правительственных контрактов в компьютерной области. POSIX - это "интерфейс переносимой ОС, базирующейся на UNIX". POSIX - собрание международных стандартов интерфейсов ОС в стиле UNIX. Использование стандарта POSIX (IEEE стандарт 1003.1 - 1988) позволяет создавать программы стиле UNIX, которые могут легко переноситься из одной системы в другую.

5.1.4.  Безопасность

В дополнение к стандарту POSIX правительство США также определило требования компьютерной безопасности для приложений, используемых правительством. Многие из этих требований являются желаемыми свойствами для любой многопользовательской системы. Правила безопасности определяют такие свойства, как защита ресурсов одного пользователя от других и установление квот по ресурсам для предотвращения захвата одним пользователем всех системных ресурсов ( таких как память).

Обеспечение защиты информации от несанкционированного доступа является обязательной функцией сетевых операционных систем. В большинстве популярных систем гарантируется степень безопасности данных, соответствующая уровню С2 в системе стандартов США.

Основы стандартов в области безопасности были заложены "Критериями оценки надежных компьютерных систем". Этот документ, изданный в США в 1983 году национальным центром компьютерной безопасности (NCSC - National Computer Security Center), часто называют Оранжевой Книгой.

В соответствии с требованиями Оранжевой книги безопасной считается такая система, которая "посредством специальных механизмов защиты контролирует доступ к информации таким образом, что только имеющие соответствующие полномочия лица или процессы, выполняющиеся от их имени, могут получить доступ на чтение, запись, создание или удаление информации".

Иерархия уровней безопасности, приведенная в Оранжевой Книге, помечает низший уровень безопасности как D, а высший - как А.

  • В класс D попадают системы, оценка которых выявила их несоответствие требованиям всех других классов.
  • Основными свойствами, характерными для С-систем, являются: наличие подсистемы учета событий, связанных с безопасностью, и избирательный контроль доступа. Уровень С делится на 2 подуровня: уровень С1, обеспечивающий защиту данных от ошибок пользователей, но не от действий злоумышленников, и более строгий уровень С2. На уровне С2 должны присутствовать средства секретного входа, обеспечивающие идентификацию пользователей путем ввода уникального имени и пароля перед тем, как им будет разрешен доступ к системе. Избирательный контроль доступа, требуемый на этом уровне позволяет владельцу ресурса определить, кто имеет доступ к ресурсу и что он может с ним делать. Владелец делает это путем предоставляемых прав доступа пользователю или группе пользователей. Средства учета и наблюдения (auditing) - обеспечивают возможность обнаружить и зафиксировать важные события, связанные с безопасностью, или любые попытки создать, получить доступ или удалить системные ресурсы. Защита памяти - заключается в том, что память инициализируется перед тем, как повторно используется. На этом уровне система не защищена от ошибок пользователя, но поведение его может быть проконтролировано по записям в журнале, оставленным средствами наблюдения и аудитинга.
  • Системы уровня В основаны на помеченных данных и распределении пользователей по категориям, то есть реализуют мандатный контроль доступа. Каждому пользователю присваивается рейтинг защиты, и он может получать доступ к данным только в соответствии с этим рейтингом. Этот уровень в отличие от уровня С защищает систему от ошибочного поведения пользователя.
  • Уровень А является самым высоким уровнем безопасности, он требует в дополнение ко всем требованиям уровня В выполнения формального, математически обоснованного доказательства соответствия системы требованиям безопасности.

Различные коммерческие структуры (например, банки) особо выделяют необходимость учетной службы, аналогичной той, что предлагают государственные рекомендации С2. Любая деятельность, связанная с безопасностью, может быть отслежена и тем самым учтена. Это как раз то, что требует С2 и то, что обычно нужно банкам. Однако, коммерческие пользователи, как правило, не хотят расплачиваться производительностью за повышенный уровень безопасности. А-уровень безопасности занимает своими управляющими механизмами до 90% процессорного времени. Более безопасные системы не только снижают эффективность, но и существенно ограничивают число доступных прикладных пакетов, которые соответствующим образом могут выполняться в подобной системе. Например для ОС Solaris (версия UNIX) есть несколько тысяч приложений, а для ее аналога В-уровня - только сотня.

6.   Операционные системы различных фирм производителей программного обеспечения

6.1  Семейство операционных систем UNIX

История и общая характеристика семейства операционных систем UNIX

UNIX имеет долгую и интересную историю. Начавшись как несерьезный и почти "игрушечный" проект молодых исследователей, UNIX стал многомиллионной индустрией, включив в свою орбиту университеты, многонациональные корпорации, правительства и международные организации стандартизации.

UNIX зародился в лаборатории Bell Labs фирмы AT&T более 20 лет назад. В то время Bell Labs занималась разработкой многопользовательской системы разделения времени MULTICS (Multiplexed Information and Computing Service) совместно с MIT и General Electric, но эта система потерпела неудачу, отчасти из-за слишком амбициозных целей, не соответствовавших уровню компьютеров того времени, а отчасти и из-за того, что она разрабатывалась на языке PL/1, а компилятор PL/1 задерживался и вообще плохо работал после своего запоздалого появления. Поэтому Bell Labs вообще отказалась от участия в проекте MULTICS, что дало возможность одному из ее исследователей, Кену Томпсону, заняться поисковой работой в направлении улучшения операционной среды Bell Labs. Томпсон, а также сотрудник Bell Labs Денис Ритчи и некоторые другие разрабатывали новую файловую систему, многие черты которой вели свое происхождение от MULTICS. Для проверки новой файловой системы Томпсон написал ядро ОС и некоторые программы для компьютера GE-645, который работал под управлением мультипрограммной системы разделения времени GECOS. У Кена Томпсона была написанная им еще во времена работы над MULTICS игра "Space Travel" - "Космическое путешествие". Он запускал ее на компьютере GE-645, но она работала на нем не очень хорошо из-за невысокой эффективности разделения времени. Кроме этого, машинное время GE-645 стоило слишком дорого. В результате Томпсон и Ритчи решили перенести игру на стоящую в углу без дела машину PDP-7 фирмы DEC, имеющую 4096 18-битных слов, телетайп и хороший графический дисплей. Но у PDP-7 было неважное программное обеспечение, и, закончив перенос игры, Томпсон решил реализовать на PDP-7 ту файловую систему, над который он работал на GE-645. Из этой работы и возникла первая версия UNIX, хотя она и не имела в то время никакого названия. Но она уже включала характерную для UNIX файловую систему, основанную на индексных дескрипторах inode, имела подсистему управления процессами и памятью, а также позволяла двум пользователям работать в режиме разделения времени. Система была написана на ассемблере. Имя UNIX (Uniplex Information and Computing Services) было дано ей еще одним сотрудником Bell Labs, Брайаном Керниганом, который первоначально назвал ее UNICS, подчеркивая ее отличие от многопользовательской MULTICS. Вскоре UNICS начали называть UNIX.

Первыми пользователями UNIX'а стали сотрудники отдела патентов Bell Labs, которые нашли ее удобной средой для создания текстов.

Большое влияние на судьбу UNIX оказала перепись ее на языке высокого уровня С, разработанного Денисом Ритчи специально для этих целей. Это произошло в 1973 году, UNIX насчитывал к этому времени уже 25 инсталляций, и в Bell Labs была создана специальная группа поддержки UNIX.

Широкое распространение UNIX получил с 1974 года, после описания этой системы Томпсоном и Ритчи в компьютерном журнале CACM. UNIX получил широкое распространение в университетах, так как для них он поставлялся бесплатно вместе с исходными кодами на С. Широкое распространение эффективных C-компиляторов сделало UNIX уникальной для того времени ОС из-за возможности переноса на различные компьютеры. Университеты внесли значительный вклад в улучшение UNIX и дальнейшую его популяризацию. Еще одним шагом на пути получения признания UNIX как стандартизованной среды стала разработка Денисом Ритчи библиотеки ввода-вывода stdio. Благодаря использованию этой библиотеки для компилятора С, программы для UNIX стали легко переносимыми.

Рис. 5.1. История развития UNIX

Широкое распространение UNIX породило проблему несовместимости его многочисленных версий. Очевидно, что для пользователя весьма неприятен тот факт, что пакет, купленный для одной версии UNIX, отказывается работать на другой версии UNIX. Периодически делались и делаются попытки стандартизации UNIX, но они пока имели ограниченный успех. Процесс сближения различных версий UNIX и их расхождения носит циклический характер. Перед лицом новой угрозы со стороны какой-либо другой операционной системы различные производители UNIX-версий сближают свои продукты, но затем конкурентная борьба вынуждает их делать оригинальные улучшения и версии снова расходятся. В этом процессе есть и положительная сторона - появление новых идей и средств, улучшающих как UNIX, так и многие другие операционные системы, перенявшие у него за долгие годы его существования много полезного.

На рисунке 5.1 показана упрощенная картина развития UNIX, которая учитывает преемственность различных версий и влияние на них принимаемых стандартов. Наибольшее распространение получили две весьма несовместимые линии версий UNIX: линия AT&T - UNIX System V, и линия университета Berkeley-BSD. Многие фирмы на основе этих версий разработали и поддерживают свои версии UNIX: SunOS и Solaris фирмы Sun Microsystems, UX фирмы Hewlett-Packard, XENIX фирмы Microsoft, AIX фирмы IBM, UnixWare фирмы Novell (проданный теперь компании SCO), и список этот можно еще долго продолжать.

Наибольшее влияние на унификацию версий UNIX оказали такие стандарты как SVID фирмы AT&T, POSIX, созданный под эгидой IEEE, и XPG4 консорциума X/Open. В этих стандартах сформулированы требования к интерфейсу между приложениями и ОС, что дает возможность приложениям успешно работать под управлением различных версий UNIX.

Независимо от версии, общими для UNIX чертами являются:

  • многопользовательский режим со средствами защиты данных от несанкционированного доступа,
  • реализация мультипрограммной обработки в режиме разделения времени, основанная на использовании алгоритмов вытесняющей многозадачности (preemptive multitasking),
  • использование механизмов виртуальной памяти и свопинга для повышения уровня мультипрограммирования,
  • унификация операций ввода-вывода на основе расширенного использования понятия "файл",
  • иерархическая файловая система, образующая единое дерево каталогов независимо от количества физических устройств, используемых для размещения файлов,
  • переносимость системы за счет написания ее основной части на языке C,
  • разнообразные средства взаимодействия процессов, в том числе и через сеть,
  • кэширование диска для уменьшения среднего времени доступа к файлам.

Далее мы подробно остановимся на основных концепциях версии UNIX System V Release 4, которая вобрала в себя лучшие черты линий UNIX System V и UNIX BSD.

Версия UNIX System V Release 4 - это незаконченная коммерческая версия операционной системы, т.к. в ее кодах отсутствуют многие системные утилиты, необходимые для успешной эксплуатации ОС, например утилиты администрирования или менеджер графического интерфейса. Версия SVR4 является скорее стандартной реализацией кода ядра, вобравшая в себя наиболее популярные и эффективные решения из различных версий ядра UNIX, такие как виртуальная файловая система VFS, отображаемые в память файлы и т.п. Код SVR4 (частично доработанный) лег в основу многих современных коммерческих версий UNIX, таких как HP-UX, Solaris, AIX и т.д.

6.2  Микроядро Mach

Ядро любой современной коммерческой версии UNIX представляет собой набор очень большого количества функций, с запутанными взаимосвязями и очень расплывчатыми границами между основными подсистемами. В результате любая модификация организованной таким образом системы дается тяжело и приводит к появлению в новых версиях большого количества ошибок. Кроме того, не во всех инсталляциях нужны все компоненты ядра, а при монолитном его построении удаление ненужных функций затруднено. Недостатки, присущие операционным системам с большим монолитным ядром (а это в первую очередь различные версии UNIX'а), породили интерес к системам, построенным на основе микроядра.

Микроядерный подход заключается в том, что базовые функции ядра оформляются в виде отдельной небольшой компоненты, выполняемой в привилегированном режиме, а остальные функции ОС выполняются в пользовательском режиме с использованием примитивов микроядра. Ввиду больших потенциальных преимуществ, которые сулит этот подход, можно предположить, что в ближайшее время большинство новых операционных систем будет строиться на основе микроядра. Наиболее известными реализациями этого подхода являются микроядра Mach и Chorus.

Основной сложностью использования микроядерного подхода на практике является замедление скорости выполнения системных вызовов при передаче сообщений через микроядро по сравнению с классическим подходом.

Можно подробно рассмотреть принципы организации и функции микроядра Mach по двум причинам. Во-первых, микроядро по определению содержит базовые механизмы, имеющиеся внутри любой операционной системы, поэтому знакомство с этими механизмами в чистом виде полезно и для изучения любой конкретной ОС.

Во-вторых, микроядра лицензируются и используются как готовый программный продукт в качестве основы для построения коммерческой сетевой операционной системы. Сейчас имеется несколько коммерческих реализаций операционных систем на основе микроядра Mach (NextStep фирмы Next, UNIX BSD, OSF/1 v.1.3), а также проводится ряд работ по использованию этого ядра. Так как свойства микроядра в значительной степени определяют свойства ОС, построенной на его основе, то знание микроядра помогает в оценке характеристик использующей его ОС.

6.2.1.  История Mach

Система Mach имела в качестве предшественницы систему RIG - Rochester Intelligent Gateway, начало разработки которой пришлось на 1975 год. RIG была написана для 16-битового мини-компьютера компании DataGeneral под названием Elipce. Целью этой разработки была демонстрация возможностей  структурирования операционной системы и представления ее в виде набора процессов, которые могут взаимодействовать между собой путем передачи сообщений, в том числе и по сети. Затем эта операционная система была улучшена путем добавления средств защиты и средств прозрачной работы в сети и получила название Accent (в 1981 году, в университете Карнеги-Меллона). В 1984 году она уже использовалась на 150 компьютерах PERQ - ранних графических станциях, но проиграла соревнование с UNIX'ом. Это обстоятельство побудило создать третье поколение ОС, использующей механизм обмена сообщениями. Этот проект и был назван Mach. В связи с тем, что Mach проектировалась как система, совместимая с UNIX, планировалась поддержка большого количества приложений для UNIX. Кроме совместимости с UNIX, в Mach были введены и другие усовершенствования, включая нити, улучшенные механизмы межпроцессного взаимодействия, поддержка многопроцессорных систем, улучшенная виртуальная память и др. В это время агентство DARPA искало операционную систему для поддержки мультипроцессоров. Выбор был сделан в пользу университета Карнеги-Меллона, и работы над ОС Mach были продолжены. Было решено сделать эту систему совместимой с 4.2BSD путем комбинации Mach и 4.2BSD в виде единого ядра. Хотя этот подход привел к большому ядру, он гарантировал абсолютную совместимость. Первая версия Mach была реализована в 1986 году для VAX11/784, 4-х процессорной машины. Вскоре эта ОС была перенесена на IBM PC RT и Sun 3. К 1987 году Mach выполнялась также на мультипроцессорах Encore и Sequent. Хотя Mach и имела сетевые средства, ее скорее можно было отнести к ОС отдельной машины или мультипроцессора, а не к сетевой распределенной прозрачной системе. Вскоре была создана организация производителей компьютеров OSF (IBM, DEC, Hewlett Packard) для того, чтобы отобрать контроль над ОС UNIX у ее собственника AT&T. Они выбрали Mach 2.5 в качестве основы для их первой операционной системы OSF/1. Хотя Mach 2 и OSF/1 содержали большое количество кода Berkeley и AT&T, была надежда, что OSF, по крайней мере, сможет контролировать направление развития UNIX. В 1988 году ядро Mach 2.5 было большим и монолитным из-за того, что содержало большое количество кода Berkeley UNIX. А в 1989 году университет Карнеги-Меллона удалил весь код BSD UNIX из ядра и поместил его в пользовательское пространство. То, что осталось, было микроядром, состоящим из чистого кода Mach. Эта версия 3.0 и используется как основа последующих версий OSF.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8


на тему рефераты
НОВОСТИ на тему рефераты
на тему рефераты
ВХОД на тему рефераты
Логин:
Пароль:
регистрация
забыли пароль?

на тему рефераты    
на тему рефераты
ТЕГИ на тему рефераты

Рефераты бесплатно, реферат бесплатно, курсовые работы, реферат, доклады, рефераты, рефераты скачать, рефераты на тему, сочинения, курсовые, дипломы, научные работы и многое другое.


Copyright © 2012 г.
При использовании материалов - ссылка на сайт обязательна.