![]() |
|
|
Реферат: СИНГУЛЯРНОЕ РАЗЛОЖЕНИЕ В ЛИНЕЙНОЙ ЗАДАЧЕ МЕТОДА НАИМЕНЬШИХ КВАДРАТОВПри умножении этой матрицы справа на
Матрица 1.5. QR–разложениеТеорема 2. Пусть А – m´n–матрица. Существует ортогональная m´m–матрица Q такая, что в матрице QA=R под главной диагональю стоят только нулевые элементы. Доказательство. Выберем ортогональную m´m–матрицу Q в соответствии с преобразованием Хаусхолдера (9), так, чтобы первый столбец Q1A имел нулевые компоненты со 2–ой по m–ю. Далее выбираем ортогональную (m-1)´(m–1)–матрицу P2 следующим образом. Будучи применена к m–1 вектору, составленному из компонент со 2–ой по m–ю второго столбца матрицы Q1A, она аннулирует компоненты с 3–ей по m–ю этого вектора. Матрица преобразования ортогональна, и Q2Q1A имеет в первых двух столбцах нули под главной диагональю. Продолжая таким образом, можно построить произведение, состоящее максимум из n ортогональных преобразований, которое трансформирует А к верхней треугольной форме. Формальное доказательство можно получить методом конечной индукции. Полученное представление матрицы произведением ортогональной и верхней треугольной матриц называется QR–разложением. Теорема 3. Пусть А – m´n–матрица ранга к, причем k<n£m. Существуют ортогональная m´m–матрица Q и m´n–матрица перестановки P такие, что
где R – верхняя треугольная к´к–матрица ранга к. Доказательство. Выберем матрицу перестановки Р таким образом, чтобы первые к столбцов матрицы AP, были линейно независимы. Согласно теореме 2, найдется ортогональная m´m–матрица Q такая, что QAP будет верхней треугольной. Поскольку первые к столбцов АР линейно независимы, это будет верно для первых к столбцов QAP. Все элементы матрицы QAP, стоящие на пересечении строк с номерами к+1,...,m и столбцов с номерами к+1,...,n, будут нулями. В противном случае rankQAP>k, что противоречит предположению rankA=k. Итак, QAP имеет форму, указанную правой частью (4). Теорема доказана. Подматрицу [R:T] из правой части (18) можно теперь преобразовать к компактной форме, требуемой от матрицы R из теоремы 2. Это преобразование описывает следующая лемма. Лемма 1. Пусть [R:T] – к´к–матрица, причем R имеет ранг к. Существует ортогональная n´n–матрица W такая, что где Доказательство леммы вытекает из теоремы 3, если отождествить величины n, k, [R:T], W из формулировки леммы с соответствующими величинами m, n, AT, QT теоремы 3. Используя теорему 3 и лемму 1 можно доказать следующую теорему. Теорема 4. Пусть А – m´n–матрица ранга к . Найдутся ортогональная m´m–матрица Н и ортогональная n´n–матрица К такие, что
причем R11 – невырожденная треугольная к´к–матрица. Заметим, что выбором Н и К в уравнении (19) можно добиться, чтобы R11 была верхней или нижней треугольной. В (19) матрица А представлена произведением A=HRKT, где R – некоторая прямоугольная матрица, ненулевые компоненты которой сосредоточены в невырожденной треугольной подматрице. Далее мы покажем, что эту невырожденную подматрицу R можно упростить далее до невырожденной диагональной матрицы. Это разложение тесно связано со спектральным разложением симметричных неотрицательно определенных матриц ATA и AAT (см. 11). Теорема 5. Пусть А – m´n–матрица ранга k. Тогда существуют ортогональная m´m–матрица U, ортогональная n´n–матрица V и диагональная m´n–матрица S такие, что UTAV=S, A=USVT (20) Матрицу S можно выбрать так, чтобы ее диагональные элементы составляли невозрастающую последовательность; все эти элементы неотрицательны и ровно к из них строго положительны. Диагональные элементы S называются сингулярными числами А. Докажем сперва лемму для специального случая m=n=rankA. Лемма 2. Пусть А – n´n–матрица ранга n. Тогда существует ортогональная n´n–матрица U, ортогональная n´n–матрица V и диагональная n´n–матрица S такие, что UTAV=S, A=USVT и последовательные диагональные элементы S положительны и не возрастают. Доказательство леммы. Положительно определенная симметричная матрица ATA допускает спектральное разложение ATA=VDVT, (21) где V – ортогональная n´n–матрица, а D – диагональная матрица, причем диагональные элементы D положительны и не возрастают. Определим S как диагональную n´n–матрицу, диагональные элементы которой суть положительные квадратные корни из соответствующих диагональных элементов D. Таким образом D=STS=S2, S-1DS-1=I. (22) Определим матрицу U=AVS-1 (23) Из (21), (22), (23) и ортогональности V следует, что UTU=S-1VTATAVS-1=S-1DS-1=I т.е. U ортогональна. Из (23) и ортогональности V выводим USVT=AVS-1SVT=AVVT=A Лемма доказана. Доказательство теоремы 5. Пусть A=HRKT, где H, R, KT имеют свойства, указанные в теореме 4. Так как R11 из (19) – невырожденная треугольная к´к–матрица, то согласно лемме 2 , можно написать
Здесь
где:
Теперь, определяя U и V формулами
заключаем из (24) – (26), что A=USVT, где U, S, V имеют свойства, указанные в формулировке теоремы 5. Это завершает доказательство. Заметим, что сингулярные числа матрицы А определены однозначно, в то время, как в выборе ортогональных матриц U, V есть произвол. Пусть s – сингулярное число А, имеющее кратность l. Это значит, что для упорядоченных сингулярных чисел найдется индекс I такой, что Положим k=min(m,n), и пусть Q – ортогональная к´к–матрица вида Здесь Р – ортогональная l´l–матрица Если A=USVT – сингулярное разложение А и si=…=si+l-1, то сингулярным разложением А
будет также и 1.6. Число обусловленностиНекоторые вычислительные задачи поразительно чувствительны к изменению данных. Этот аспект численного анализа не зависит от плавающей арифметики или выбранного алгоритма. Например: Найти корни полинома: (x-2)2=10-6 Корни этого уравнения есть 2+10-3 и 2-10-3. Однако изменение свободного члена на 10-6 может вызвать изменение в корнях, равное 10-3. Операции с матрицами, как правило, приводят к решению систем линейных уравнений. Коэффициенты матрицы в правой части системы линейных уравнений редко известны точно. Некоторые системы возникают из эксперимента, и тогда коэффициенты подвержены ошибкам наблюдения. Коэффициенты других систем записываются формулами, что влечет за собой ошибки округлений. В связи с этим необходимо знать, как влияют ошибки в коэффициентах матрицы на решение. Именно для этого вводится понятие обусловленности матрицы. По определению число обусловленности есть величина Нормой вектора x в пространстве векторов 1)
положительной определенности – 2)
положительной однородности – 3)
неравенству треугольника – Нормой квадратной матрицы А в пространстве
матриц, согласованной с нормой вектора 1)
2)
3)
4)
мультипликативное неравенство – Наиболее употребимы следующие нормы для векторов: ·
норма суммы модулей ·
евклидова норма ·
норма максимума модуля Нормы матриц: ·
·
·
Здесь Умножение вектора х на матрицу А приводит к новому вектору Ах, норма которого может очень сильно отличаться от нормы вектора х. Область изменений может быть задана двумя числами Максимум и минимум берутся по всем ненулевым векторам. Заметим, что если А вырождена, то m=0. Отношение M/m называется числом обусловленности матрицы А,
Рассмотрим норму обратной[6]
матрицы Для матрицы А существует сингулярное разложение Рассмотрим систему уравнений Ax=b, и другую систему,
полученную изменением правой части: A(x+Dx)=b+Db .
Будем считать Db ошибкой в b,
а Dx соответствующей ошибкой в x,
хотя нам нет необходимости считать ошибки малыми. Поскольку A(Dx)=Db,
то определения M и m немедленно приводят к неравенствам Величина Приведем некоторые свойства числа обусловленности. Ясно, что
M³m и поэтому cond(А)³1. Если Р – матрица
перестановок[7],
то компоненты вектора Px лишь порядком отличаются от компонент вектора х.
Отсюда следует, что 2.1. АлгоритмыQR–алгоритм начинается с разложения матрицы по
Грамму-Шмидту Эта формула описывает QR–алгоритм без сдвигов. Обычно время которое тратится на такой процесс пропорционально кубу размерности матрицы – n3. Необходимо процесс ускорить, для чего используется предварительное приведение матрицы А к форме Хессенберга[8] а также используется алгоритм со сдвигом. Форма Хессенберга представляет из себя верхнюю треугольную матрицу (верхняя форма Хессенберга) у которой сохранена одна диагональ ниже главной, а элементы ниже этой диагонали равны нулю. Если матрица симметрична, то легко видеть, что матрица Хессенберга превращается в трехдиагональную матрицу[9]. При использовании матрицы Хессенберга время процесса пропорционально n2, а при использовании трехдиагональной матрицы – n. Можно использовать другие соотношения где Qs – унитарная, а Ls – нижняя треугольная матрица. Такой алгоритм носит название QL–алгоритма. В общем случае, когда все собственные значения матрицы
различны, последовательность матриц As
имеет пределом нижнюю треугольную матрицу В общем случае, наддиагональный элемент которые определяют матрицу Если матрица А эрмитова, то очевидно, что и все матрицы Аs эрмитовы; если А действительная и симметричная, то все Qs ортогональны и все Аs действительны и симметричны. 2.2. Реализация разложенияТаким образом, разложение Далее реализуется итерационный процесс приведения
двухдиагональной матрицы J0 к
диагональной форме, так что имеет место следующая последовательность: Матрицы Ti
выбираются так, чтобы последовательность матриц а матрица |
|
|||||||||||||||||||||||||||||
![]() |
|
Рефераты бесплатно, реферат бесплатно, курсовые работы, реферат, доклады, рефераты, рефераты скачать, рефераты на тему, сочинения, курсовые, дипломы, научные работы и многое другое. |
||
При использовании материалов - ссылка на сайт обязательна. |