на тему рефераты
 
Главная | Карта сайта
на тему рефераты
РАЗДЕЛЫ

на тему рефераты
ПАРТНЕРЫ

на тему рефераты
АЛФАВИТ
... А Б В Г Д Е Ж З И К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я

на тему рефераты
ПОИСК
Введите фамилию автора:


Реферат: Синтез комбинацонных схем и конечных автоматов, сети Петри


Таблица 1.3.1 – Покрытия K0-кубов

Существенной импликантой, или экстремалью, называется такая импликанта, которая в единственном числе покрывает хотя бы один из       K0-кубов.

Из таблицы следует, что все импликанты являются экстремалями. Следовательно, они все войдут в запись функции в виде сокращённой ДНФ:

                      .                       (1.3.7)

Комбинационная схема – это дискретное устройство, каждый из выходных сигналов которого в момент времени  tm  определяется так:

                               yj(tm) = ƒ ( x1(tm), x2(tm),…,xn(tm)) ,                        (1.3.8)

где . Видно, что выходной сигнал в  m-й момент времени определяется только комбинацией входных сигналов в данный момент и не зависит от их предыдущих значений. Поэтому комбинационную схему можно реализовать на логических элементах, выполняющих операции из определённого базиса булевых функций.

Приведём  F1  к базису И – НЕ, а  F2 – к базису ИЛИ – НЕ:

  (1.3.9)

     .                  (1.3.10)

Получив выражения для функций, приведённых к соответствующим базисам, можно нарисовать комбинационные схемы, реализующие эти функции, на элементах одного вида: для первой функции это будут                И – НЕ-элементы, для второй – ИЛИ – НЕ :


Рисунок 1.3.1 – Схема на И – НЕ-элементах


Рисунок 1.3.2 – Схема на ИЛИ – НЕ-элементах

1.4 Выводы по разделу

В первой части были рассмотрены примеры минимизации (упрощения) булевых функций двумя разными способами. Была практически показана возможность приведения функций двух аргументов к базису, состоящему всего из одной функции. Были построены комбинационные схемы, иллюстрирующие полученные результаты. Выгода рассмотренных преобразований функций становится очевидной при их практической реализации на стандартизованных электронных микросхемах.

2 Синтез конечных автоматов

2.1 Постановка задачи

Конечный автомат задан своими уравнениями переходов и выходов:

s(j+1) = [2∙s(j) + x(j) + B] mod 8 ,

y(j) = [ s(j) + x(j) + A] mod 2 ,

 .

Требуется:

а) построить таблицы переходов, выходов и общую таблицу переходов автомата;

б) минимизировать автомат по числу состояний с использованием таблиц, полученных ранее;

в) построить граф минимизированного автомата и выписать для него матрицу переходов;

г) переходя ко двоичному представлению входа  X,  выхода  Y  и состояния  S,  составить таблицу входов и выходов комбинационной схемы автомата и выполнить минимизацию булевых функций, соответствующих выходам и состояниям автомата;

д) разработать логическую схему автомата в базисе И – НЕ, реализуя элементы памяти на триггерах и задержках.

2.2 Теоретические сведения

Конечным автоматом называется такое дискретное устройство, выходные сигналы которого в определённые моменты времени зависят не только от последнего пришедшего входного сигнала, но и от некоторого количества предыдущих его значений. 

Различают синхронные и асинхронные автоматы. У асинхронных смена выходных сигналов  y(tj)  может происходить только в моменты изменения входных  x(tj) , у синхронных – в моменты времени, определяемые дополнительным синхронизирующим сигналом  c(t) .

Определим множества, которым могут принадлежать входные и выходные сигналы (условимся обозначать  tj  как  j):

 – множетва входных и выходных сигналов.

Тогда выражения

                                                                           (2.2.1)

определяют входной и выходной алфавиты автомата.

Пусть  . Тогда если  y(j) = λ(x(j)),  то этот автомат является, очевидно, комбинационной схемой.

Введём дополнительную переменную для того, чтобы охарактеризовать состояние автомата в каждый момент времени  j:

                                                                      (2.2.2)

В том случае, если  Xи  S – конечные множества, то и сам автомат называют конечным.

В виде уравнений любой конечный автомат можно записать разными способами. Одна из  возможных форм записи:

                                                                            (2.2.3)

Записанный таким образом автомат называется автоматом Мили. Ясно, что это – более информативная форма записи по сравнению с автоматом Мура:

                                                                         (2.2.4)

Способы задания автоматов.

Во - первых, автомат может быть задан непосредственно уравнениями вида (2.2.3) или (2.2.4).

Во - вторых, уравнения (2.2.3) и (2.2.4) могут быть представлены в табличной форме. Табличный аналог первого уравнения в (2.2.3) называется таблицей переходов, второго – таблицей выходов.

В - третьих, таблицы переходов и выходов можно объединить в одну. Содержимое каждой клетки представляет собой дробь: над косой чертой вписывается соответствующее значение из таблицы переходов, под косой чертой – значение из таблицы выходов. Полученная таким образом таблица называется общей таблицей переходов и выходов конечного автомата.

Граф автомата – это сигнальный граф, вершины которого обозначают состояния автомата, на дугах отражены условия перехода из состояния в состояние и значения выходных сигналов в виде дроби: над косой чертой – x(j), под ней – y(j).

Конечный автомат можно также описать с помощью матрицы переходов. Это аналог графа в табличной форме. Она представляет собой квадратную матрицу размерности число состояний  число состояний, в которой отражены условия перехода из состояния в состояние аналогично изображённым на графе.

Общее определение конечного автомата:

 

                                              M = (X, Y, S, δ, λ),                                  (2.2.5)

где  X – входной алфавит,  Y – выходной алфавит,  S – множество состояний,  δ – функция переходов,  λ – функция выходов.

Пусть имеется два автомата: M  и  M’.

Если для любого   существует по крайней мере одно , эквивалентное ему, то говорят, что  M’  покрывает  MM’ ≥  M.

Если одновременно  M’ ≥  M  и  M  ≥  M’,  то  M ~ M’ . Получаем эквивалентные автоматы. В этом случае невозможно различить  M  и  M’  по их реакции на входные сигналы.

Существуют два основных положения определения понятия эквивалентности состояний:

а) состояния  si  и  sj  явно различны, если соответствующие им строки в таблице выходов разные;

б) состояния  si  и  sj  явно эквивалентны, если соответствующие им строки в общей таблице переходов автомата одинаковы или становятся таковыми при замене  si  на  sj  или наоборот.

Минимизация (упрощение) автоматов основано на понятии эквивалентных автоматов. Под минимизацией автомата будем понимать сокращение числа его состояний.

2.3 Расчёты и полученные результаты.

Построение таблиц переходов, выходов и общей таблицы переходов и выходов на основе заданных уравнений автомата Мили очевидно:

     x(j)

s(j)

0

1

2

3

0

1

0

1

0

1

0

1

0

1

2

1

0

1

0

3

0

1

0

1

4

1

0

1

0

5

0

1

0

1

6

1

0

1

0

7

0

1

0

1

Таблица 2.3.1 – Таблица выходов автомата

     x(j)

s(j)

0

1

2

3

0

0

1

2

3

1

2

3

4

5

2

4

5

6

7

3

6

7

0

1

4

0

1

2

3

5

2

3

4

5

6

4

5

6

7

7

6

7

0

1

Таблица 2.3.2 – Таблица переходов автомата

     x(j)

s(j)

0

1

2

3

0

0/1

1/0

2/1

3/0

1

2/0

3/1

4/0

5/1

2

4/1

5/0

6/1

7/0

3

6/0

7/1

0/0

1/1

4

0/1

1/0

2/1

3/0

5

2/0

3/1

4/0

5/1

6

4/1

5/0

6/1

7/0

7

6/0

7/1

0/0

1/1

Таблица 2.3.3 – Общая таблица переходов и выходов автомата

Перейдём непосредственно к минимизации полученного автомата по числу состояний. Для этого воспользуемся алгоритмом, известным в литературе как метод Гриса - Хопкрофта. Его достоинство в том, что он даёт гарантированно минимальную форму автомата. Однако в общем случае он является довольно трудоёмким и применяется, как правило, для автоматов с небольшим количеством состояний. Он основан на свойстве транзитивности эквивалентности

                                  (si ~ sj) ∩ (sj ~ sk)  (si ~ sk)                              (2.3.1)

Пара эквивалентных состояний переходит при всех возможных значениях входа в пары также эквивалентных состояний.

Алгоритм состоит из следующих шагов.

Сначала разбиваем все состояния автомата на множества по признаку совпадения выходных сигналов. В нашем случае получаем 2 множества:       S1 = {0, 2, 4, 6}  и  S2 = {1, 3, 5, 7}.

Чтобы назвать каждый из полученных классов новым состоянием, нужно убедиться в том, что в каждый класс входят только эквивалентные между собой состояния. Для этого составляем таблицу пар эквивалентных состояний. При этом не забываем о том, что эквивалентными могут быть состояния, принадлежащие только одному классу. В таблицу заносим все те пары, в которые переходят при соответствующих входах исходные, вероятно эквивалентные, пары:

пары

0

1

2

3

0;2

0;4

1;5

2;6

3;7

0;4

0;0

1;1

2;2

3;3

0;6

0;4

1;5

2;6

3;7

2;4

4;0

5;1

6;2

3;7

2;6

4;4

5;5

6;6

7;7

4;6

0;4

1;5

2;6

3;7

1;3

2;6

3;7

4;0

5;1

1;5

2;2

3;3

4;4

5;5

1;7

2;6

3;7

4;0

5;1

3;5

6;2

7;3

0;4

1;5

3;7

6;6

7;7

0;0

1;1

5;7

2;6

3;7

4;0

5;1

Таблица 2.3.4 – Таблица пар эквивалентных состояний

Ищем в полученной таблице неэквивалентные пары – пары из разных множеств. В таблице таких нет, значит, окончательно получаем автомат с двумя  новыми состояниями – обозначим их  0  и  1.

Следующим шагом оформляем общую таблицу переходов для минимизированной формы автомата:

     x(j)

s(j)

0

1

2

3

0

0/1

1/0

0/1

1/0

1

0/0

1/1

0/0

1/1

Таблица 2.3.5 – Новая общая таблица переходов.

На основании полученной общей таблицы переходов и выходов можно нарисовать граф минимизированного автомата с двумя состояниями:

 

            0/1U 2/1                              1/0 U 3/0                            1/1U 3/1

                                       0                            1

                                                        0/0 U 2/0

  

Рисунок 2.3.1 – Граф минимизированного автомата

Для практической реализации полученного автомата надо двоично закодировать все сигналы. Для кодировки  y  и  s  достаточно одного двоичного разряда,  x  требует двух –  x1  и  x2:

x

x1

x2

0

0

0

1

0

1

2

1

0

3

1

1

Страницы: 1, 2, 3


на тему рефераты
НОВОСТИ на тему рефераты
на тему рефераты
ВХОД на тему рефераты
Логин:
Пароль:
регистрация
забыли пароль?

на тему рефераты    
на тему рефераты
ТЕГИ на тему рефераты

Рефераты бесплатно, реферат бесплатно, курсовые работы, реферат, доклады, рефераты, рефераты скачать, рефераты на тему, сочинения, курсовые, дипломы, научные работы и многое другое.


Copyright © 2012 г.
При использовании материалов - ссылка на сайт обязательна.