на тему рефераты
 
Главная | Карта сайта
на тему рефераты
РАЗДЕЛЫ

на тему рефераты
ПАРТНЕРЫ

на тему рефераты
АЛФАВИТ
... А Б В Г Д Е Ж З И К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я

на тему рефераты
ПОИСК
Введите фамилию автора:


Реферат: Разработка системы задач (алгоритмы-программы) по дискретной математике


Реферат: Разработка системы задач (алгоритмы-программы) по дискретной математике

Вятский Государственный Гуманитарный Университет

Кафедра прикладной математики

 

 

Курсовая работа по информатике

Тема: Разработка системы упражнений и задач (алгоритмы-программы) по дискретной математике.

Выполнил:Студент 4 курса

факультета информатики

Лепешкин Антон Геннадъевич

Проверила: Ашихмина Татьяна Викторовна

 

Киров 2004
Содержание.

Содержание. 2

Введение. 3

Глава 1 Теоретический материал. 4

Перебор с возвратом. 4

Поиск данных. 5

Логарифмический(бинарный) поиск. 5

Методы сортировки. 6

Сортировка слияниями. 6

Быстрая сортировка Хоара. 6

Графы. 6

Представление графа в памяти компьютера. 6

Достижимость. 7

Кратчайшие пути. 8

Алгоритм Дейкстры.. 8

Алгоритм Флойда (кратчайшие пути между всеми парами вершин). 9

Глава 2 Система задач и упражнений. 9

Классификация задач. 9

Комнаты музея. 12

Пират в подземелье. 13

Диспетчер и милиция. 14

Задача о футболистах. 15

Задача о семьях. 16

Метро. 16

Роботы. 17

Вожатый в лагере. 20

Егерь. 21

Игра «Найди друга». 22

Приложение. 22

1. 22

2. 25

3. 27

4. 30

5. 32

6. 32

7. 34

8. 39

9. 41

10. 43

Заключение. 45

Литература.. 45

Введение.

Несмотря на то, что для решения задач в основном используются общие методы, все-таки мышление каждого конкретного человека немного отличается от мышления других людей, если он обладает достаточной базой знаний. Таким образом, при решении задач «начиная с нуля» можно зайти в тупик, если выбрать неверный путь решения задачи. В данном курсовом проекте мы разработаем собственную классификацию задач, позволяющую определить наиболее подходящий способ решения, чтобы облегчить процесс моделирования и составления алгоритма и предотвратить выбор неверного способа, также рассмотрим данную классификацию с точки зрения методики преподавания информатики. выбор неверного способа. В этом заключается актуальность данного курсового проекта.

Цель: Разработать собственную классификацию для задач по дискретной математике. Для достижения этой цели были поставлены следующие задачи:

1)   Разработать собственную систему задач и упражнений по дискретной математике.

2)   Определить способы решения данных задач, используя теоретический материал курса дискретной математики.

3)   Составить алгоритм – программу для каждой задачи, реализующий выбранный способы решения.

4)   Разработать систему критериев классификации данной системы задач.

    
Глава 1 Теоретический материал.          

 Перебор с возвратом.

Общая схема

Даны N упорядоченных множеств U1 U2,..., Un (N - известно), и требуется построить вектор А=(а1 а2, ..., аn), где a1€U1, a2€U2, ..., an€Un, удовлетворяющий заданному множеству условий и ограничений.

В алгоритме перебора вектор А строится покомпонентно слева
направо. Предположим, что уже найдены значения первых (к-1)
компонент, A=(a1, a2, ..., a(k-1)), ?, ..., ?), тогда заданное множество
условий ограничивает выбор следующей компоненты аk некоторым
множеством SkCUk. Если Sk<>[ ] (пустое), мы вправе выбрать в
качестве ак

наименьший элемент        Sk        и

перейти   к   выбору                               ^/^        "^выборы п«я»,

(к+1) компоненты и

так   далее.   Однако                               /[      ■  Д     Jfcv     при данном а,

если условия                                           условия

а,, ^иаз

таковы, что Sk оказалось пустым, то мы возвращаемся к выбору

(к-1) компоненты, отбрасываем

а(k-1) и выбираем в качестве нового a(k-1) тот элемент S(k-i), который непосредственно следует за только что отброшенным. Может оказаться, что для нового a(k-1) условия задачи допускают непустое Sk, и тогда мы пытаемся снова выбрать элемент ак. Если невозможно выбрать a(k-1), мы возвращаемся еще на шаг назад и выбираем новый элемент а(к-2) и так далее.

      Графическое изображение - дерево поиска. Корень дерева (0 уровень) есть пустой вектор. Его сыновья суть множество кандидатов для выбора а1 и, в общем случае, узлы k-го уровня являются кандидатами на выбор ак при условии, что а1, а2, ..., a(k-1) выбраны так, как указывают предки этих узлов. Вопрос о том, имеет ли задача решение, равносилен вопросу, являются ли какие-нибудь узлы дерева решениями. Разыскивая все решения, мы хотим получить все такие узлы.

Рекурсивная схема реализации алгоритма,

procedure Backtrack(Beктop,i);

begin

if <вектор является решением> then <записать его>

else begin <вычислить Si>;

           for a€Si do Васкtrаск(вектор| | a,i+l);

end; end;

Оценка временной сложности алгоритма. Данная схема реализации перебора приводит к экспоненциальным алгоритмам. Действительно, Пусть все решения имеют длину N, тогда исследовать требуется порядка | Si| *| S2| *...*| SN| узлов дерева. Если значение S; ограничено некоторой константой С, то получаем порядка CN узлов.                    

        Поиск данных.

Логарифмический(бинарный) поиск

Логарифмический (бинарный или метод деления пополам) по­иск данных применим к сортированному множеству элементов а1 < а2 < ... < ап, размещение которого выполнено на смежной па­мяти. Для большей эффективности поиска элементов надо, чтобы пути доступа к ним стали более короткими, чем просто последова­тельный перебор. Наиболее очевидный метод: начать поиск со среднего элемента, т.е. выполнить сравнение с элементом а. Результат сравнения позволит определить, в какой половине по­следовательности а{, а2,...,   а, 1+„ ,,..., ап продолжить поиск,

применяя к ней ту же процедуру, и т.д. Основная идея бинарного поиска довольно проста, однако «для многих хороших програм­мистов не одна попытка написать правильную программу закон­чилась неудачей». Чтобы досконально разобраться в алгоритме, лучше всего представить данные ах < а2 < ... < ап в виде двоичного дерева сравнений, которое отвечает бинарному поиску.

Двоичное дерево называется деревом сравнений , если для лю­бой его вершины (корня дерева или корня поддерева) выполняет­ся условие:

{Вершины левого поддерева}<Вершина корня<{Вершины правого поддерева }.

Рис. Пример дерева сравнений, отвечающего бинарному поиску среди сортированных элементов: 3,5,7,9,12,19,27,44

Т.о. бинарный поиск – это сравнение эталона х, которое осуществляется с элементом, расположенным в середине массива и в зависимости от результата сравнения (больше или меньше) дальнейший поиск проводится в левой или правой половине массива.

Используется, когда имеется какая-либо информация о массиве, например массив упорядочен по неубыванию. Общее количество сравнений имеет порядок О(N*logN).


Методы сортировки.

Сортировка слияниями.

Используется, когда необходимо объединить упорядоченные фрагменты массивов: A[k],…,A[m] и B[m+1],…,B[q] в один C[k],…,C[q], тоже упорядоченный (k<=m<=q). Основная идея решения состоит в сравнении очередных элементов каждого фрагмента, выяснении, какой из элементов меньше, переносе его во вспомогательный массив С (для простоты) и продвижении по тому фрагменту массива, из которого взят элемент. При этом следует не забыть записать в С оставшуюся часть того фрагмента, который не успел себя «исчерпать».

      Метод слияний – один из первых в теории алгоритмов сортировки. Он предложен Дж. Фон Нейманом в 1945 году. Эффективность алгоритма, по Д. Кнуту, составляет С=О(N*logN).

Быстрая сортировка Хоара.

Метод предложен Ч.Э.Р.Хоаром в 1962 году.

Идея метода. В исходном массиве А выбирается некоторый элемент Х (барьерный элемент). Основной целью алгоритма является запись Х «на свое место» в массиве, пусть это будет место k, такое, что слева от Х были элементы массива, меньшие или равные Х, а справа – элементы массива, большие Х, т.е. массив А будет иметь вид: (А[1],A[2],…,A[k-1]),A[k] (X), (A[k+1],…, A[n]).

      В результате элемент A[k] находится на своем месте и исходный массив А разделен на две неупорядоченные части, барьером между которыми  является элемент A[k]. Дальнейшие действия очевидны – независимо сортировать полученные части по той же логике до тех пор, пока не останутся части массива, состоящие из одного элемента, то есть пока не будет отсортирован весь массив. 

Графы.

Представление графа в памяти компьютера

Определим граф как конечное множество вершин V и набор Е неупорядоченных и упорядоченных пар вершин и обозначим G=(V,E). Мощности множеств V и Е будем обозначать буквами N и М Неупорядоченная пара вершин называется ребром, а упорядоченная пара - дугой. Граф, содержащий только ребра, называется неориентированным; граф, содержащий только дуги, - ориентированным, или орграфом. Вершины, соединенные ребром, называются смежными. Ребра, имеющие общую вершину, также называются смежными. Ребро и любая из его двух вершин называются инцидентными. Говорят, что ребро (u, v) соединяет вершины и и v. Каждый граф можно представить на плоскости множеством точек, соответствующих вершинам, которые соединены линиями, соответствующими ребрам. В трехмерном пространстве любой граф можно представить таким образом, что линии (ребра) не будут пересекаться.

Способы описания. Выбор соответствующей структуры данных для представления графа имеет принципиальное значение при разработке эффективных алгоритмов. При решении задач используются следующие четыре основных способа описания графа: матрица инциденций; матрица смежности; списки связи и перечни ребер. Мы будем использовать только два: матрицу смежности и перечень ребер.

Матрица смежности    - это двумерный массив размерности N*N. 1,    вершина    с    номером    i    смежна    с вершиной    с    номером    j,    0,    вершина    с    номером    i    не    смежна    с вершиной    с    номером    j

Для хранения перечня ребер необходим двумерный массив R размерности М*2. Строка массива описывает ребро.

Достижимость

Путем (или ориентированным маршрутом) ориентированного графа называется последовательность дуг, в которой конечная вершина всякой дуги, отличной от последней, является начальной вершиной следующей.

Простой путь - это путь, в котором каждая дуга используется не более одного раза.

Элементарный путь - это путь, в котором каждая вершина используется не более одного раза.

Если существует путь из вершины графа v в вершину i, то говорят, что i достижима из v.

Матрицу достижимости определим следующим образом:

1, если вершина i достижима из v и

R[v,u]=0,    при    недостижимости

Множество R(v) - это множество таких вершин графа G, каждая из которых может быть достигнута из вершины v. Обозначим через F(v) множество таких вершин графа G, которые достижимы из v с использованием путей длины 1. T2(v) - это Г(Г(у)), то есть с использованием путей длины 2 и так далее. В этом случае:

R(v)={v}UГ(v)UГ2(v)U...UГp(v).

При этом р - некоторое конечное значение, возможно, достаточно большое.

Пример (для рисунка). R(1)={1}U{2,5}U{1,6}U{2,5,4}U{1,6,7}={1,2,4,5,6,7}

Выполняя эти действия для каждой вершины графа, мы получаем матрицу достижимостей R.

Кратчайшие пути.

Алгоритм Дейкстры

Дано. Ориентированный граф G=<V,E>, s - вершина источник; матрица смежности A (A:array[1..n,1..n] of integer); для любых u, v€V вес дуги неотрицательный (А[u,v]>=0). Результат. Массив кратчайших расстояний - D.

В данном алгоритме формируется множество вершин Т, для которых еще не вычислена оценка расстояние и, это главное, минимальное значение в D по множеству вершин, принадлежащих Т, считается окончательной оценкой для вершины, на которой достигается этот минимум. С точки зрения здравого смысла этот факт достаточно очевиден. Другой "заход" в эту вершину возможен по пути, содержащему большее количество дуг, а так как веса неотрицательны, то и оценка пути будет больше.

Пример

     Его матрица смежности:

      ∞   3    7   ∞   ∞   ∞  

       1   ∞   2   ∞   ∞   1

А= ∞   1    ∞  4    4    ∞

      ∞   ∞   ∞  ∞    1    5

      ∞   ∞   1   ∞    ∞   3

      ∞   ∞   ∞   2    ∞   ∞

     

В таблице приведена последовательность шагов (итераций) работы алгоритма. На первом шаге минимальное значение D достигается на второй вершине. Она исключается из множества Т, и улучшение оценки до оставшихся вершин (3,4,5,6) ищется не по всем вершинам, а только от второй.

№ итерации

D[1]

D[2]

D[31

D[4]

D[5]

D[6]

T

1

0

3

7 [2,3,4,5,6]

2

0 3 5 11

4

[3,4,5,6]

3

0 3

5

6 4 [3,4,5]

4

0 3 5

6

9 4 [4,5]

5

0 3 5 6

7

4 [5]

Время работы алгоритма пропорционально N2.

Алгоритм Флойда (кратчайшие пути между всеми парами вершин).

Дано. Ориентированный граф G=<V,E>, s - вершина источник; матрица смежности A (A:array[1..n,1..n] of integer); для любых u, v€V вес дуги неотрицательный (А[u,v]>=0). Результат. Матрица D кратчайших расстояний между всеми парами вершин графа и кратчайшие пути.

Идея алгоритма. Обозначим через Dm[i,j] оценку кратчайшего пути из i в j с промежуточными вершинами из множества [1..m]. Тогда имеем: D0[i,j]:=A[i,j] и D(m+1)[i,j]=min{Dm[i,j],Dm[i,m+1]+Dm[m+1,j]}. Второе равенство требует пояснения. Пусть мы находим кратчайший путь из i в j с промежуточными вершинами из множества [1..(m+1)]. Если этот путь не содержит вершину (m+1), то D(m+1)[i,j]=Dm[i,j]. Если же он содержит эту вершину, то его можно разделить на две части от i до (m+1) до j. Время работы алгоритма пропорционально N3.

Глава 2 Система задач и упражнений.

Классификация задач.

Набор задач, разработанный нами и изложенный ниже можно систематизировать по следующим критериям:

По тематике.


По уровню сложности задачи.

 

 

 

 

 

 

 


Задачи высокого уровня сложности: это задачи олимпиадного уровня, требующие глубокого знания предмета, а также комплексного подхода к решению задачи (Пример для нашего набора задач, задача о роботах, задача о комнатах музея).

Задачи среднего уровня сложности: это задачи, требующие хороших знаний предмета и навыков применения знаний на практике, т.е в процессе решения задач (Пример: задача о семьях, задача о футболистах, задача про милицию и диспетчера).

Задачи низкого уровня сложности: это задачи, для решения которых необходимы общие знания предмета и не требующие особых навыков применения знаний на практике, т.к. данные задачи направлены на формирование данных навыков.

 


Ситуативные задачи: это задачи, формулировка которых представляет собой ситуацию из жизни. Это необходимо для более наглядного представления задачи, а также для того, чтобы сделать задачу более интересной для решения.

Задачи со строгой формулировкой: это задачи, в формулировке которой строго изложена суть задачи. Данные задачи являются задачами более низкого уровня, так как в них не требуется определения тематики задачи, а следовательно, и выбора способа решения, требуется лишь реализация алгоритма на языке программирования.



Задачи с единственным способом решения: это задачи, решить которые можно лишь одним способом, т.е. задачу нельзя рассмотреть с точки зрения различных тематик, таким образом, отсутствует выбор способа решения задачи (Пример: задача о футболистах и т.д.).

Задачи с несколькими способами решения: это задачи, которые могут быть рассмотрены с точки зрения различных тематик и, таким образом, имеют более широкий спектр решений (Пример: задача о метрополитене и т.д.).      


Задачи, имеющие решение применимое только к конкретным задачам: это задачи, которые в своей формулировке имеют достаточно много деталей, чтобы их решение было применимо только к конкретным задачам (Пример: задача о роботах).

Задачи, имеющие решение применимое к целому классу подобных задач: это задачи, в формулировке которых не содержится особых деталей, чтобы их решение было применимо к целому классу подобных задач (Пример: задача о метрополитене и т.д.).


Задачи.

Комнаты музея. Составьте алгоритм-программу определения числа комнат в музее и площади каждой комнаты в клетках. План музея показан ниже на рисунке.

11   6   11  6    3    10  6                         

7    9    6   13  5    7    5

1   10  12  7    13  13  5

13 11  10  8    10  14  13

Цифровая карта

Площадь музея состоит из клеток: m рядов и p столбцов. В каждой клетке такой матрицы (цифровая карта) проставляется число, в котором кодируется наличие стен у данной клетки. Значение числа в каждой клетке является суммой чисел: 1 (клетка имеет стену на западе), 2 (клетка имеет стену на севере), 4 (клетка имеет стену на востоке), 8 (клетка имеет стену на юге). Например, если в клетке стоит число 11 (11=8 + 2 + 1), то клетка имеет стену с южной стороны, с северной и с западной.

       Исходные данные представляются в текстовом файле со следующей структурой. Первая строка: m, p – размерность сетки. Вторая строка, третья и следующие строки содержат описание матрицы цифровой карты по строкам. Расчетные данные вывести на экран в следующем порядке: первая строка – площадь каждой комнаты музея, вторая строка – количество комнат в музее.

Пример файла исходных данных:

4    7

11  6   11  6    3    10  6                         

Страницы: 1, 2, 3


на тему рефераты
НОВОСТИ на тему рефераты
на тему рефераты
ВХОД на тему рефераты
Логин:
Пароль:
регистрация
забыли пароль?

на тему рефераты    
на тему рефераты
ТЕГИ на тему рефераты

Рефераты бесплатно, реферат бесплатно, курсовые работы, реферат, доклады, рефераты, рефераты скачать, рефераты на тему, сочинения, курсовые, дипломы, научные работы и многое другое.


Copyright © 2012 г.
При использовании материалов - ссылка на сайт обязательна.