![]() |
|
|
Реферат: Процессор пентиумявляется крайне важным для производительности процессора в целом. Если в каждом такте для каждого ресурса готова к выполнению толь- ко одна микрокоманда, то проблемы выбора не возникает. Но если готовых к выполнению на данном ресурсе микрокоманд несколько, то какую из них выбрать? Можно доверить выбор случаю. Можно приме- нить алгоритм «первый пришел - первый обслужен». Идеальным был бы выбор микрокоманды, выполнение которой привело бы к максимальному сокращению графа потоков данных выполняемой программы. Однако поскольку нет возможности определить такую микрокоманду в ходе выполнения программы, используется алгоритм планирования, имити- рующий модель «первый пришел - первый обслужен», предпочитая смежное выполнение смежных микрокоманд. Поскольку система команд Intel содержит множество команд пе- рехода, многие микрокоманды также являются переходами. Алгоритм, реализованный в буфере переходов, позволяет в большинстве случаев правильно предсказать, состоится или не состоится переход, но иногда он все же будет ошибаться. Рассмотрим для примера случай, когда буфер переходов предсказывает переход назад в конце цикла: до тех пор, пока условие выхода из цикла не выполняется, переход будет предсказываться верно, однако когда это условие станет ис- тинным, предсказание будет ошибочным. Для исправления случаев неверного предсказания перехода при- менен следующий подход. Микрокомандам перехода еще в упорядочен- ной части конвейера ставятся в соответствие адрес следующей ко- манды и предполагаемый адрес перехода. После вычисления перехода реальная ситуация сравнивается с предсказанной. Если они совпада- ют, то проделанная, исходя из предположения об исходе перехода, работа оказывается полезной, так как соответствует реальному ходу программы, а микрокоманда перехода удаляется из пула команд. Если же допущена ошибка (переход был предсказан, но не прои- зошел, или было предсказано отсутствие перехода, а в действитель- ности он состоялся), то устройство выполнения переходов изменяет статус всех микрокоманд, засланных в пул команд после команды пе- рехода, чтобы убрать их из пула команд. Правильный адрес перехода направляется в буфер переходов, который перезапускает весь конве- йер с нового адреса. 2Устройство откатаСтруктура устройства отката изображена на рисунке 5. Устройство отката также проверяет статус микрокоманд в пуле команд: оно ищет микрокоманды, которые уже выполнены и могут быть удалены из пула. Именно при удалении микрокоманды результаты ее выполнения, хранящиеся в пуле команд, реально изменяют состояние вычислительной системы, например, происходит запись в регистры. Устройство отката должно не только обнаруживать завершившиеся микрокоманды, но и удалять их из пула команд таким образом, чтобы изменение состояния вычислительной системы соответствовало перво- начальному порядку команд в программе. При этом оно должно учиты- вать и правильно обрабатывать прерывания, исключительные ситуа- ции, неправильно предсказанные переходы и другие экстремальные · 10 - случаи. Процесс отката занимает два такта. В первом такте устройство отката считывает пул команд и отыскивает готовые к откату микро- команды; затем оно определяет, какие из этих микрокоманд могут быть удалены из пула в соответствии с исходным порядком команд в программе. Во втором такте результаты отката записываются в пул команд и в регистровый файл отката. Устройство отката может обра- ботать три микрокоманды за такт. 2Интерфейс шиныСтруктура интерфейса шины изображена на рисунке 6. Есть два типа обращений к памяти: чтение из памяти в регистр и запись из регистра в память. При чтении из памяти должны быть заданы адрес памяти, размер блока считываемых данных и регистр-назначение. Команда чтения ко- дируется одной микрокомандой. При записи надо задать адрес памяти, размер блока записывае- мых данных и сами данные. Поэтому команда записи кодируется двумя микрокомандами: первая генерирует адрес, вторая готовит данные. Эти микрокоманды планируются независимо и могут выполняться па- раллельно; они могут переупорядочиваться в буфере записи. Запись в память никогда не выполняется опережающим образом, так как нет эффективного способа организации отката в случае не- верного предсказания. Разные команды записи никогда не переупоря- дочиваются друг относительно друга. Буфер записи инициирует за- пись, только когда сформированы и адрес, и данные, и нет ожидаю- щих выполнения более ранних команд записи. При изучении вопроса о возможности и целесообразности переу- порядочения доступа к памяти инженеры «Intel» пришли к следующим выводам. Команда записи не должна обгонять идущую впереди команду за- писи, так как это может лишь незначительно увеличить производи- тельность. Можно запретить командам записи обгонять команды чтения из памяти, так как это приведет лишь к незначительной потере произ- водительности. Запрет командам чтения обгонять другие команды чтения или команды записи может повлечь существенные потери в производитель- ности. Поэтому была реализована архитектура подсистемы памяти, поз- воляющая командам чтения опережать команды записи и другие коман- ды чтения. Буфер упорядочения памяти служит в качестве распреде- лительной станции и буфера переупорядочивания. В нем хранятся от- ложенные команды чтения и записи, и он осуществляет их повторное диспетчирование, когда блокирующее условие (зависимость по данным или недоступность ресурсов) исчезает. · 11 - 2ВыводТаким образом, реализованная в P6 комбинация таких архитек-турных методов, как улучшенное предсказание переходов (почти всегда правильно определяется предстоящая последовательность ко-манд), анализ потоков данных (определяется оптимальный порядок выполнения команд) и опережающее выполнение (предвиденная после-довательность команд выполняется без простоев в оптимальном по-рядке), позволила удвоить производительность по отношению к Pen-tium при использовании той же самой технологии производства. Эта комбинация методов называется динамическим выполнением. В настоящее время «Intel» ведет разработку новой 0,35 мкм технологии производства, что даст возможность выпускать процессо- ры P6 с тактовой частотой ядра свыше 200 МГц. . · 12 - 2Р6 как платформа для построения мощных серверовСреди наиболее значимых тенденций развития компьютеров в последние годы можно выделить как все возрастающее использование систем на основе процессоров семейства х86 в качестве серверов приложений, так и растущую роль «Intel» как поставщика непроцес-сорных технологий, таких как шины, сетевые технологии, сжатие ви-деоизображений, флэш-память и средства системного администрирова-ния. Выпуск процессора Р6 продолжает проводимую «Intel» политику переноса возможностей, которыми ранее обладали лишь более дорогие компьютеры, на массовый рынок. Для внутренних регистров Р6 пре- дусмотрен контроль по четности, а соединяющая ядро процессора и кэш второго уровня 64-битовая шина оснащена средствами обнаруже- ния и исправления ошибок. Встроенные в Р6 новые возможности диаг- ностики позволяют производителям проектировать более надежные системы. В Р6 предусмотрена возможность получения через контакты процессора или с помощью программного обеспечения информации о более чем 100 переменных процессора или происходящих в нем собы- тиях, таких как отсутствие данных в кэше, содержимое регистров, появление самомодифицирующего кода и так далее. Операционная сис- тема и другие программы могут считывать эту информацию для опре- деления состояния процессора. В Р6 также реализована улучшенная поддержка контрольных точек, то есть обеспечивается возможность отката компьютера в зафиксированное ранее состояние в случае воз- никновения ошибки. Р6 поддерживает те же возможности по контролю при помощи функциональной избыточности (FRC), что и Pentium. Это означает, что в P6 предусмотрена возможность построения систем с параллель- ным выполнением одних и тех же операций двумя процессорами с вза- имным контролем результатов и сообщением об ошибке в случае рас- хождения. При этом, к сожалению, P6 по-прежнему не сообщает о причине ошибки. В модели Р54С процессора Pentium «Intel» предложила простой и недорогой способ организации двухпроцессорной работы: ведущий и ведомый процессоры используют общий кэш и невидимо для приложений разделяют программу на потоки. Однако использовать такую органи- зацию работы могут лишь многопоточные операционные системы. Р6 переводит организацию многопроцессорной работы на новый уровень, соответствующий определенной «Intel» мультипроцессорной спецификации MPS 1.1. Одним из наиболее сложных аспектов симмет- ричной многопроцессорной работы является поддержание кэш-соот- ветствия для всех подсоединенных к отдельным процессорам кэшей. Р6 поддерживает кэш-соответствие для вторичного кэша на внутрен- нем уровне, а внешняя шина P6 выступает как симметричная мультип- роцессорная шина. Раньше проектировщики мультипроцессорных систем должны были создавать собственные шины для связи процессоров, либо приобре- тать лицензию на уже существующие решения, например Corollary C-bus II. Теперь средства, реализованные «Intel» в Р6, позволяют объединить четыре процессора в мультипроцессорную систему. Четыре - это предел, обуславливаемый принятой в Р6 логикой арбитража. · 13 - Еще одна проблема для производителей многопроцессорных сис- тем на базе Р6 состоит в том, что для эффективной работы таких систем к каждому процессору подключается выделенный кэш, размер которого должен быть больше, чем 256 кб - размер кэша в корпусе Р6. Таким образом, проектировщики высокопроизводительных серверов будут вынуждены использовать внешние контроллеры кэша и дополни- тельные микросхемы статической памяти. Эта проблема будет разрешена, если «Intel» увеличит размер кэша второго уровня в корпусе Р6, что достижимо либо за счет уве- личения размера кристалла, либо за счет перехода к более миниа- тюрной технологии производства. Сегодня производители, которые хотят строить системы с более чем четырьмя процессорами, должны объединять две или более четырехпроцессорных системы с помощью высокоскоростного последовательного соединения память-память. Ре- ализации таких соединений для PCI ожидаются в этом году. 2Системы на основе Р6Можно предположить, что компьютеры на базе P6 первоначально будут напоминать сегодняшние наиболее мощные Pentium-компьютеры: по меньшей мере 1 Гб жесткий диск, 32 Мб оперативной памяти, мощ-ные графические контроллеры. Появятся первые многопроцессорные серверы на Р6. Улучшенная диагностика и средства обработки ошибок в Р6 поз- воляют проектировать на базе Р6 надежные серверы уровня предприя- тия. Улучшенная поддержка симметричной многопроцессорной работы в сочетании с поддерживающими такую работу версиями OS/2 и NetWare приведет к построению на Р6 еще более мощных серверов. «Intel» предполагает, что первыми Р6-системами будут серве- ры, однако настольные компьютеры на P6 появятся почти одновремен- но с ними. Цена первых настольных Р6-компьютеров будет начинаться с 4000 долларов и расти с ростом мощности конфигурации. С учетом размера корпуса Р6, его потребления энергии и рассеиваемого тепла (требуется активное охлаждение), не следует ожидать быстрого по- явления портативных компьютеров на Р6. Как обычно, первыми пользователями настольных компьютеров на процессоре нового поколения будут разработчики программного обес- печения и пользователи из таких областей, как САПР, настольные издательские системы, научное моделирование и визуализация его результатов, статистика, одним словом, те области, которым всегда недоставало и будет недоставать существующих скоростей. Что касается серверов, то первыми кандидатами на переход к Р6 являются серверы приложений, осуществляющие такие работы, как рассылку сообщений, доступ к базам данных и хранилищам докумен- тов. Системные серверы и серверы печати не привязаны к конкретно- му типу процессоров и поэтому не испытывают таких потребностей в увеличении мощности. Вполне вероятно, что первыми покупателями Р6- систем будут сравнительно небольшие организации, где на эти системы будет воз- ложено выполнение самостоятельно разработанных критичных для дея- тельности организации приложений. Большие предприятия будут при- обретать такие системы несколько позднее, после тщательной оценки · 14 - и подготовки. Дело в том, что большие организации эксплуатируют значительно большее число разработанных на заказ программ и стан- дартного программного обеспечения, и требуется провести проверку на его совместимость с новыми системами. Типичная Р6-система будет включать процессор Р6 с тактовой частотой 133 МГц, внешнюю шину, работающую на половине, одной третьей или одной четверти от этой частоты, набор чипов Intel Р6/PCI по имени Orion, поддерживающий версию 2.1 32-битовой шины PCI с частотой 33 МГц, но не поддерживающий 64-битовые расширения PCI. Вследствие наличия встроенного кэша второго уровня, в боль- шинстве Р6-систем будет отсутствовать внешний кэш и контроллер кэша. Для построения основной памяти будут использоваться обычные 60-наносекундные DRAM или, в некоторых случаях, поддерживаемые в наборе чипов Intel Triton для Pentium более скоростные EDO DRAM. Стандартной будет конфигурация с 16 Мб оперативной памяти при все возрастающем числе систем с 32 Мб. Первоначально Р6-системы будут включать как шину PCI, так и шины EISA/ISA. Однако по мере роста поддержки PCI необходимость в EISA и ISA будет уменьшаться. Особенно важным для этого является появление предусмотренных в PCI 2.1 мостов PCI-PCI. Главной проб- лемой при использовании PCI сегодня является ограничения на сте- пень ее нагрузки. Мосты между шинами позволяют работать с большим числом устройств в пределах одного логического адресного прост- ранства. Включение в систему нескольких шин PCI, соединенных мостами, позволит как избежать использования других шин, так и подключать помимо памяти и графики высокоскоростные сетевые интерфейсы (нап- ример, 100 Мбит/сек Ethernet, FDDI и ATM) и высокоскоростной пос- ледовательный ввод-вывод. Емкость памяти на жестком диске будет по меньшей мере 730 Мб с использованием интерфейса IDE или SCSI. Большая часть систем будет включать 2-скоростные или более быстрые CDROM. Графика бу- дет обеспечивать разрешение 1024 на 768 пикселов и управляться картами-акселераторами с 2-4 Мб памяти. Более необычные конфигурации могут включать слоты PCMCIA, 4-скоростные CD-ROM, поддержку 40 Мб/сек Ultra SCSI, встроенные 10-100 Мбит/сек сетевые порты и встроенные возможности мультиме- диа, реализованные с помощью цифровых сигнальных процессоров или специальных чипов для обработки звука, ввода/вывода видеоизобра- жений, компрессии/декомпрессии. Некоторые производители, возмож- но, прибегнут к использованию новых типов памяти, 128-битовых графических акселераторов, 64-битовых расширений шины и других новшеств, допускаемых спецификацией PCI. 2Следующее поколение процессоровТехнология Р6 является логическим развитием технологии Pen-tium. Ожидается что в процессоре Р7 будет реализована существенно отличная от Р6 технология, обеспечивающая прорыв в производитель-ности при сохранении совместимости с семейством x86. В прошлом году «Intel» и «Hewlett-Packard» договорились о · 15 - совместной разработке нового микропроцессора, появление которого планируется на 1997 или 1998 год. О внутреннем устройстве нового микропроцессора пока известно лишь то, что он будет использовать RISC-технологию и обеспечивать выполнение всего существующего для процессоров Intel х86 и Hewlett-Packard PA-RISC программного обеспечения. Кроме поддержки существующих наборов команд этих се- мейств, по всей видимости, в Р7 будет введена собственная система команд. Согласно преобладающей точке зрения, «Intel» и «Hewlett-Pac- kard» ведут эксперименты с технологией VLIW («very long instruc- tion word» - очень длинное командное слово). Можно сказать, что VLIW в определенном смысле прямо противоположна технологии, ис- пользуемой в Р6. В Р6 изощренно построенный декодер транслирует сложные команды х86 в более короткие и простые RISC-микрокоманды. VLIW-процессор основывается на компиляторе нового типа, который, наоборот, упаковывает несколько простых операций в одну «очень длинную» команду. Каждая «очень длинная» команда содержит незави- симые друг от друга операции, которые выполняются параллельно. Иными словами, во VLIW-процессоре ответственность за плани- рование выполнения команд переносится с аппаратуры на программное обеспечение. Планирование осуществляет компилятор, и получающийся в результате компиляции код прикладной программы содержит всю ин- формацию о порядке выполнения команд. Однако пока VLIW-технология весьма несовершенна. Во-первых, не разработаны эффективные методы проектирования VLIW-компилято- ров. Во-вторых, вполне вероятно, что программное обеспечение, разработанное для VLIW-процессора, придется перекомпилировать при появлении процессора нового поколения. По этим причинам, а также учитывая и другие обстоятельства, многие обозреватели сомневаются в том, что Intel и Hewlett-Pac- kard смогут выпустить жизнеспособный с точки зрения конкуренции на рынке VLIW-процессор. Рынок процессоров х86 слишком важен для Intel, и вряд ли Intel может полностью положиться на неопробован- ную технологию. Поэтому вполне вероятно, что Intel работает над параллельным проектом Р7, основанным на более традиционной техно- логии, чтобы застраховаться на случай неудачи VLIW-проекта. Дело в том что возможности усовершенствования архитектуры х86 не исчерпаны. Естественное направление ее развития включает усиление суперскалярности до шести одновременно выполняемых ко- манд, увеличение размера первичных кэшей, размещение вторичного кэша на кристалле процессора, большее число исполнительных уст- ройств, увеличение размера буферов и поддержка более длинных це- почек выполняемых с опережением команд. Конкуренты «Intel» также не собираются сидеть сложа руки. «NexGen» планирует выпуск процессора Nx686 в конце 1995 года и утверждает, что его производительность будет в 2-4 раза превосхо- дить производительность Nx586. «Cyrix» также работает над процес- сором-преемником М1, но подробностей пока не сообщает. Наиболее подробно сообщает о своих планах AMD. Следующий за К5 процессор К6 появится в 1996 году, а его массовое производство начнется в 1997 году. К6 будет изготавливаться по технологии 0,35 мкм и будет содержать около 6,5 миллионов транзисторов. Предпола- · 16 - гаемая производитель К6 - 300 SPECint92. В 1997 году AMD планиру- ет выпуск процессора К7, с началом его массового производства в 1998 году. К7 будет изготавливаться по технологии 0,18 мкм; число транзисторов - 10-15 миллионов. Предполагается, что при тактовой частоте 400 МГц он достигнет производительности 700 SPECint92. Наконец, в 2001 году AMD планирует выпуск процессора K8, содержа- щего 20 миллионов транзисторов и обеспечивающего производитель- ность 1000 SPECint92 на тактовой частоте 600 МГц. Возможно и появление новых конкурентов. Процессоры 386 и 486 производят IBM Microelectronics, «Texas Instruments», SGS-Thomp- son и ряд азиатских фирм. Однако до сих пор никто из них не пы- тался выйти на передовые позиции и не брался за разработку совре- менного процессора семейства х86, который мог бы конкурировать с новейшими процессорами «Intel», AMD, «Cyrix» и NexGen. . · 17 - 2ЗаключениеПроцессоры Р6 фирмы Intel выбраны в качестве элементной базы для первого в мире компьютера производительностью свыше триллиона операций в секунду. Уникальная машина предназначена главным обра-зом для расчетов по ядерной тематике Министерства энергетики США. Министерство остановило свой выбор на Intel Corporation, по- ручив ей изготовление нового компьютера, производительность кото- рого в десять раз превысит аналогичную характеристику самых быст- рых современных суперкомпьютеров. Новая вычислительная система будет установлена в Sandia National Laboratories - многоцелевой лаборатории Министерства энергетики США в городе Альбукерк (штат Нью-Мексико). В составе машины Intel/Sandia будет работать свыше 9000 микропроцессоров компании Intel следующего поколения, полу- чивших кодовое название Р6. Замечательно, что машина Intel/Sandia строится из тех же компьютерных «строительных кирпичиков», которые Intel представля- ет производителям компьютерной техники для использования в круп- номасштабных параллельных системах, высокопроизводительных серве- рах, рабочих станциях и настольных компьютерах. Новая система будет иметь пиковую производительность 1.8 триллионов операций в секунду и в десять раз повысит быстродейс- твие при работе с важными прикладными программами Министерства энергетики. Машина оснащается системной памятью в 262 Гбайт и бу- дет сдана в эксплуатацию к концу 1996 года. Недавно фирма Intel объявила новое название своего процессо- ра P6. Теперь он будет называться Pentium Pro. . · 22 - Литература1. Монитор N 3 1995г.Д.Бройтман «Микроархитектура процессора P6» с.6-11. 2. Монитор N 5 1995г.Д.Бройтман «Процессор P6: общий обзор» с.8-12. 3. Hard 'n' Soft N 10 1995г.
Приложения
1. Сейчас эта цена уже реально меньше ($200-300) |
Страницы: 1, 2
![]() |
||
НОВОСТИ | ![]() |
![]() |
||
ВХОД | ![]() |
|
Рефераты бесплатно, реферат бесплатно, курсовые работы, реферат, доклады, рефераты, рефераты скачать, рефераты на тему, сочинения, курсовые, дипломы, научные работы и многое другое. |
||
При использовании материалов - ссылка на сайт обязательна. |